Home

Awesome

<div align=center> <br> <img src='./assets/logo.png' style="width: 70%"> <br>

RLeXplore: Accelerating Research in Intrinsically-Motivated Reinforcement Learning

</div>

RLeXplore is a unified, highly-modularized and plug-and-play toolkit that currently provides high-quality and reliable implementations of eight representative intrinsic reward algorithms. It used to be challenging to compare intrinsic reward algorithms due to various confounding factors, including distinct implementations, optimization strategies, and evaluation methodologies. Therefore, RLeXplore is designed to provide unified and standardized procedures for constructing, computing, and optimizing intrinsic reward modules.

The workflow of RLeXplore is illustrated as follows:

<div align=center> <img src='./assets/workflow.png' style="width: 100%"> </div>

Table of Contents

Installation

Open a terminal and install rllte with pip:

conda create -n rllte python=3.8
pip install rllte-core 

Open a terminal and clone the repository from GitHub with git:

git clone https://github.com/RLE-Foundation/rllte.git
pip install -e .

Now you can invoke the intrinsic reward module by:

from rllte.xplore.reward import ICM, RIDE, ...

Module List

TypeModules
Count-basedPseudoCounts, RND, E3B
Curiosity-drivenICM, Disagreement, RIDE
Memory-basedNGU
Information theory-basedRE3

Tutorials

Click the following links to get the code notebook:

  1. Quick Start
  2. RLeXplore with RLLTE
  3. RLeXplore with Stable-Baselines3
  4. RLeXplore with CleanRL
  5. Exploring Hybrid Intrinsic Rewards
  6. Custom Intrinsic Rewards

Benchmark Results

We have published a space using Weights & Biases (W&B) to store reusable experiment results on recognized benchmarks. The space link is: RLeXplore's W&B Space.

<div align=center> <img src='./assets/wandb.png' style="width: 75%"> </div> <div align=center> <img src='./assets/smb.png' style="width: 100%"> </div>
AlgorithmGravitarMontezumaRevengePrivateEyeSeaquestVenture
Extrinsic1060.1942.8388.37942.37391.73
Disagreement689.120.0033.236577.03468.43
E3B503.430.5066.238690.650.80
ICM194.7131.14-27.502626.130.54
PseudoCounts295.490.001076.74668.961.03
RE3130.002.68312.72864.600.06
RIDE452.530.00-1.401024.39404.81
RND835.57160.2245.855989.06544.73
<div align=center> <img src='./assets/atari_curves.png' style="width: 70%"> </div> <div align=center> <img src='./assets/sac_ant.png' style="width: 70%"> </div>

Cite Us

To cite this repository in publications:

@article{yuan_roger2024rlexplore,
  title={RLeXplore: Accelerating Research in Intrinsically-Motivated Reinforcement Learning},
  author={Yuan, Mingqi and Castanyer, Roger Creus and Li, Bo and Jin, Xin and Berseth, Glen and Zeng, Wenjun},
  journal={arXiv preprint arXiv:2405.19548},
  year={2024}
}