Awesome
AMPERE: AMR-Aware Prefix for Generation-Based Event Argument Extraction Model
Code for our ACL-2023 paper AMPERE: AMR-Aware Prefix for Generation-Based Event Argument Extraction Model
Environment
- Python==3.7
- PyTorch==1.11.0
- ipdb==0.13.9
- transformers==4.18.0 (pip)
- tensorboardx==2.5.1 (pip)
- sentencepiece==0.1.96 (pip)
- penman==1.2.2 (pip)
- networkx==2.6.3 (pip)
- amrlib==0.7.1 (pip)
Or use the yml file we provide.
AMR Parser Setup
We follow the instruction in https://amrlib.readthedocs.io/en/latest/install/ to
install the trained AMR parser model. We use parse_spring
version 0.1.0 as our
parser
Data
We support ace05e
, and ere
.
Preprocessing
Our preprocessing mainly adapts OneIE's and DEGREE's released scripts with minor modifications. We deeply thank the contribution from the authors of the paper.
ace05e
- Prepare data processed from DyGIE++
- Put the processed data into the folder
processed_data/ace05e_dygieppformat
- Run
./scripts/process_ace05e.sh
ere
- Download ERE English data from LDC, specifically, "LDC2015E29_DEFT_Rich_ERE_English_Training_Annotation_V2", "LDC2015E68_DEFT_Rich_ERE_English_Training_Annotation_R2_V2", "LDC2015E78_DEFT_Rich_ERE_Chinese_and_English_Parallel_Annotation_V2"
- Collect all these data under a directory with such setup:
ERE
├── LDC2015E29_DEFT_Rich_ERE_English_Training_Annotation_V2
│ ├── data
│ ├── docs
│ └── ...
├── LDC2015E68_DEFT_Rich_ERE_English_Training_Annotation_R2_V2
│ ├── data
│ ├── docs
│ └── ...
└── LDC2015E78_DEFT_Rich_ERE_Chinese_and_English_Parallel_Annotation_V2
├── data
├── docs
└── ...
- Run
./scripts/process_ere.sh
The above scripts will generate processed data in ./process_data
.
Training
Run ./scripts/train_eae.sh
Clean up log when training
If you want to have more clean log file, you can comment out line 151 in the "layout.py" file in penman package
logger.info('Interpreted: %s', g)
This should be in CONDAENVPATH/envs/Ampere/lib/python3.7/site-packages/penman
Citation
If you find that the code is useful in your research, please consider citing our paper.
@inproceedings{acl2023ampere,
author = {I-Hung Hsu and Zhiyu Xie and Kuan-Hao Huang and Premkumar Natarajan and Nanyun Peng},
title = {AMPERE: AMR-Aware Prefix for Generation-Based Event Argument Extraction Model},
booktitle = {Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (ACL)},
year = {2023},
}
Contact
If you have any issue, please contact I-Hung Hsu at (ihunghsu@usc.edu)