Home

Awesome

<div align="center"> <h1> Singing Voice Conversion based on Whisper & neural source-filter BigVGAN </h1> <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/PlayVoice/lora-svc"> <img alt="GitHub forks" src="https://img.shields.io/github/forks/PlayVoice/lora-svc"> <img alt="GitHub issues" src="https://img.shields.io/github/issues/PlayVoice/lora-svc"> <img alt="GitHub" src="https://img.shields.io/github/license/PlayVoice/lora-svc"> </div>
Black technology based on the three giants of artificial intelligence:

OpenAI's whisper, 680,000 hours in multiple languages

Nvidia's bigvgan, anti-aliasing for speech generation

Microsoft's adapter, high-efficiency for fine-tuning

LoRA is not fully implemented in this project, but it can be found here: LoRA TTS & paper

use pretrain model to fine tune

https://user-images.githubusercontent.com/16432329/231021007-6e34cbb4-e256-491d-8ab6-5ce4e822da21.mp4

Dataset preparation

Necessary pre-processing:

then put the dataset into the data_raw directory according to the following file structure

data_raw
├───speaker0
│   ├───000001.wav
│   ├───...
│   └───000xxx.wav
└───speaker1
    ├───000001.wav
    ├───...
    └───000xxx.wav

Install dependencies

Data preprocessing

use this command if you want to automate this:

python3 prepare/easyprocess.py

or step by step, as follows:

data_svc/
└── waves-16k
│    └── speaker0
│    │      ├── 000001.wav
│    │      └── 000xxx.wav
│    └── speaker1
│           ├── 000001.wav
│           └── 000xxx.wav
└── waves-32k
│    └── speaker0
│    │      ├── 000001.wav
│    │      └── 000xxx.wav
│    └── speaker1
│           ├── 000001.wav
│           └── 000xxx.wav
└── pitch
│    └── speaker0
│    │      ├── 000001.pit.npy
│    │      └── 000xxx.pit.npy
│    └── speaker1
│           ├── 000001.pit.npy
│           └── 000xxx.pit.npy
└── whisper
│    └── speaker0
│    │      ├── 000001.ppg.npy
│    │      └── 000xxx.ppg.npy
│    └── speaker1
│           ├── 000001.ppg.npy
│           └── 000xxx.ppg.npy
└── speaker
│    └── speaker0
│    │      ├── 000001.spk.npy
│    │      └── 000xxx.spk.npy
│    └── speaker1
│           ├── 000001.spk.npy
│           └── 000xxx.spk.npy
└── singer
    ├── speaker0.spk.npy
    └── speaker1.spk.npy

Train

final_model_loss

Inference

use this command if you want a GUI that does all the commands below:

python3 svc_gui.py

or step by step, as follows:

Source of code and References

Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers

AdaSpeech: Adaptive Text to Speech for Custom Voice

https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts/tree/master/project/01-nsf

https://github.com/mindslab-ai/univnet [paper]

https://github.com/openai/whisper/ [paper]

https://github.com/NVIDIA/BigVGAN [paper]