Awesome
Visual Prompting for Adversarial Robustness
This is the official code and belongs to this paper: https://arxiv.org/abs/2210.06284 For questions to the code, write an email to chenaoch@msu.edu or peter.lorenz@itwm.fhg.de. Or even better open an issue on github so that everybody can see.
Figure: Overview of C-AVP over two classes (red and green) vs. U-AVP and the prompt-free learning pipeline.
Install
pip install -r requirements.txt
Usage
Code structure:
./
attack/ # including all Fast-BAT & Auto Attack related attacks
model/ # visual_prompt.py
cfg.py # author style paths
cifar10_pretrain.py # pretrain a CIFAR10 model
gen_prompt.py # generate prompt
evaluate_diff_pgd_steps.py # evaluate using different PGD steps
losses.py # CW type loss
Train ResNet18 on CIFAR10
python cifar10_pretrain.py
Generate the Visual Prompt
Generate the class-wise prompt as proposed in the paper:
python gen_prompt.py --loss ce-cw --classwise
Evaluate on different attack strength
python evaluate_diff_pgd_steps.py
Results
Figure: Sensitivity analysis of prompting regularizations in C-AVP on (CIFAR-10, ResNet18).
Citation
@INPROCEEDINGS{10097245,
author={Chen, Aochuan and Lorenz, Peter and Yao, Yuguang and Chen, Pin-Yu and Liu, Sijia},
booktitle={ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={Visual Prompting for Adversarial Robustness},
year={2023},
volume={},
number={},
pages={1-5},
doi={10.1109/ICASSP49357.2023.10097245}}