Awesome
YOLOV3
Introduction
This is my own YOLOV3 written in pytorch, and is also the first time i have reproduced a object detection model.The dataset used is PASCAL VOC. The eval tool is the voc2010. Now the mAP gains the goal score.
Subsequently, i will continue to update the code to make it more concise , and add the new and efficient tricks.
Note
: Now this repository supports the model compression in the new branch model_compression
Results
name | Train Dataset | Val Dataset | mAP(others) | mAP(mine) | notes |
---|---|---|---|---|---|
YOLOV3-448-544 | 2007trainval + 2012trainval | 2007test | 0.769 | 0.768 | - | baseline(augument + step lr) |
YOLOV3-*-544 | 2007trainval + 2012trainval | 2007test | 0.793 | 0.803 | - | +multi-scale training |
YOLOV3-*-544 | 2007trainval + 2012trainval | 2007test | 0.806 | 0.811 | - | +focal loss(note the conf_loss in the start is lower) |
YOLOV3-*-544 | 2007trainval + 2012trainval | 2007test | 0.808 | 0.813 | - | +giou loss |
YOLOV3-*-544 | 2007trainval + 2012trainval | 2007test | 0.812 | 0.821 | - | +label smooth |
YOLOV3-*-544 | 2007trainval + 2012trainval | 2007test | 0.822 | 0.826 | - | +mixup |
YOLOV3-*-544 | 2007trainval + 2012trainval | 2007test | 0.833 | 0.832 | 0.840 | +cosine lr |
YOLOV3-*-* | 2007trainval + 2012trainval | 2007test | 0.858 | 0.858 | 0.860 | +multi-scale test and flip, nms threshold is 0.45 |
Note
:
- YOLOV3-448-544 means train image size is 448 and test image size is 544.
"*"
means the multi-scale. - mAP(mine)'s format is (use_difficult mAP | no_difficult mAP).
- In the test, the nms threshold is 0.5(except the last one) and the conf_score is 0.01.
others
nms threshold is 0.45(0.45 will increase the mAP) - Now only support the single gpu to train and test.
Environment
- Nvida GeForce RTX 2080 Ti
- CUDA10.0
- CUDNN7.0
- ubuntu 16.04
- python 3.5
# install packages
pip3 install -r requirements.txt --user
Brief
- Data Augment (RandomHorizontalFlip, RandomCrop, RandomAffine, Resize)
- Step lr Schedule
- Multi-scale Training (320 to 640)
- focal loss
- GIOU
- Label smooth
- Mixup
- cosine lr
- Multi-scale Test and Flip
Prepared work
1、Git clone YOLOV3 repository
git clone https://github.com/Peterisfar/YOLOV3.git
update the "PROJECT_PATH"
in the params.py.
2、Download dataset
- Download Pascal VOC dataset : VOC 2012_trainval 、VOC 2007_trainval、VOC2007_test. put them in the dir, and update the
"DATA_PATH"
in the params.py. - Convert data format : Convert the pascal voc *.xml format to custom format (Image_path0 xmin0,ymin0,xmax0,ymax0,class0 xmin1,ymin1...)
cd YOLOV3 && mkdir data
cd utils
python3 voc.py # get train_annotation.txt and test_annotation.txt in data/
3、Download weight file
- Darknet pre-trained weight : darknet53-448.weights
- This repository test weight : best.pt
Make dir weight/
in the YOLOV3 and put the weight file in.
Train
Run the following command to start training and see the details in the config/yolov3_config_voc.py
WEIGHT_PATH=weight/darknet53_448.weights
CUDA_VISIBLE_DEVICES=0 nohup python3 -u train.py --weight_path $WEIGHT_PATH --gpu_id 0 > nohup.log 2>&1 &
Notes:
- Training steps could run the
"cat nohup.log"
to print the log. - It supports to resume training adding
--resume
, it will loadlast.pt
automaticly.
Test
You should define your weight file path WEIGHT_FILE
and test data's path DATA_TEST
WEIGHT_PATH=weight/best.pt
DATA_TEST=./data/test # your own images
CUDA_VISIBLE_DEVICES=0 python3 test.py --weight_path $WEIGHT_PATH --gpu_id 0 --visiual $DATA_TEST --eval
The images can be seen in the data/
TODO
- Mish
- OctConv
- Custom data
Reference
- tensorflow : https://github.com/Stinky-Tofu/Stronger-yolo
- pytorch : https://github.com/ultralytics/yolov3
- keras : https://github.com/qqwweee/keras-yolo3