Awesome
[CVPR2024] Traffic Scene Parsing through the TSP6K Dataset
<!-- <div align="center"> <img src=https://github.com/PengtaoJiang/TSP6K/blob/main/tsp6k_logo.png width=400 height=120/> </div> --> <div align="center"><video src="https://github.com/PengtaoJiang/TSP6K/assets/23328456/217770e6-5d0b-4a3d-a709-ebe752857c85" width="700" muted="false"></video></div>The dataset and code in TSP6K dataset. Code is implemented using an open-source semantic segmentation toolbox, MMsegmentation.
Installation
Please follow the installation instructions in mmsegmentation. In our environment, we use the following versions of different packages.
mmsegmentation==0.20.2
mmcv-full=1.4.0
Install the mmseg lib first
git clone https://github.com/PengtaoJiang/TSP6K.git
cd TSP6K/
pip install -v -e .
If you want to evaluate the iIoU score, please install the cityscapesscript lib
cd mmseg/datasets/cityscapesscripts/
python setup.py build install
Dataset Preparation
Download the dataset from this link and put them into /data/TSP6K/
.
data
├── TSP6K
│ ├── image
│ ├── label
│ ├── split
You can also download the COCO-style instance bounding box annotations from this link.
Training
Train SegNext with the proposed Detail Refining Decoder using the following command
bash tools/dist_train.sh \
configs/tsp6k/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads.py \
8 --auto-resume
Evaluation
Results and models
Method | Backbone | Crop Size | Lr Sche. | val mIoU (ms) | val iIoU (ms) | config | model |
---|---|---|---|---|---|---|---|
SegNext+DRD | MSCAN-B | 1024x1024 | 160000 | 75.8 | 58.4 | config | model |
SegNext+DRD | MSCAN-L | 1024x1024 | 160000 | 76.2 | 58.9 | config | model |
We provide the pre-trained segmentation models above. You can download them and directly evaluate them by
bash tools/dist_test.sh \
configs/tsp6k/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads.py \
./work_dirs/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads/latest.pth \
8 --out ./work_dirs/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads/results.pkl \
--aug-test --eval mIoU
Evaluate the segmentation model using the iIoU metric by
bash tools/dist_test.sh \
configs/tsp6k/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads.py \
./work_dirs/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads/latest.pth \
8 --out ./work_dirs/segnext_base_1024x1024_160k_tsp6k_msaspp_rrm_5tokens_12heads/results.pkl \
--aug-test --eval cityscapes
Citation
If you find the proposed TSP6K dataset and segmentation network are useful for your research, please cite
@inproceedings{jiang2024traffic,
title={Traffic Scene Parsing through the TSP6K Dataset},
author={Jiang, Peng-Tao and Yang, Yuqi and Cao, Yang and Hou, Qibin and Cheng, Ming-Ming and Shen, Chunhua},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
year={2024}
}