Awesome
<h1 align="center"><b>FLAME Head Tracker</b></h1> <div align="center"> <a href="https://opensource.org/licenses/MIT"> <img src="https://img.shields.io/badge/License-MIT-yellow.svg" alt="License: MIT"> </a> </div> <div align="center"> <b><img src="./assets/demo.gif" alt="drawing" width="600"/></b> <br> (First two example videos were from IMavatar: <a href="https://github.com/zhengyuf/IMavatar">https://github.com/zhengyuf/IMavatar</a>) </div>Author: Peizhi Yan
Date Updated: 11-20-2024
Version: 2.0
Supported Features:
- Landmarks-based Fitting
- πMediapipe face landmarks
- π·single-image reconstruction
- π₯monocular video tracking
- Photometric Fitting
- π·single-image reconstruction
πTable of Contents
- π Todos
- π§Έ Citation
- π¦ Usage
- π₯οΈ Environment Setup
- βοΈ Acknowledgements and Disclaimer
π Todos
<details> <summary><b>Todo List</b></summary>- Improve video tracking speed. (in v1.01)
- Add Kalman filter for temporal camera pose smoothing. (in v1.1)
- Add support for photometric fitting. (expected in v2.0)
- Add ear landmarks detection module, and include ear landmarks during the fitting process. (expected in v2.1)
- Temporal smooth in the face alignment and cropping. (expected in v2.2)
- Add support for multi-view fitting. (expected in v2.3)
π§Έ Citation
This code was originally used for "Gaussian Deja-vu" (accepted for WACV 2025 in Round 1). Please consider citing our work if you find this code useful.
@article{yan2024gaussian,
title={Gaussian Deja-vu: Creating Controllable 3D Gaussian Head-Avatars with Enhanced Generalization and Personalization Abilities},
author={Yan, Peizhi and Ward, Rabab and Tang, Qiang and Du, Shan},
journal={arXiv preprint arXiv:2409.16147},
year={2024}
}
π¦ Usage
<details> <summary><b>Single-Image-Based Reconstruction</b></summary>Please follow the example in: ./Example_single-image-reconstruction.ipynb
from tracker_base import Tracker
tracker_cfg = {
'mediapipe_face_landmarker_v2_path': './models/face_landmarker_v2_with_blendshapes.task',
'flame_model_path': './models/FLAME2020/generic_model.pkl',
'flame_lmk_embedding_path': './models/landmark_embedding.npy',
'tex_space_path': './models/FLAME_albedo_from_BFM.npz',
'face_parsing_model_path': './utils/face_parsing/79999_iter.pth',
'uv_coord_mapping_file_path': './models/uv2vert_256.npy',
'template_mesh_file_path': './models/head_template.obj',
'result_img_size': 512,
'device': device,
}
tracker = Tracker(tracker_cfg)
ret_dict = tracker.load_image_and_run(img_path, realign=True, photometric_fitting=False)
The result ret_dict
contains the following data:
- vertices
(5023, 3)
The reconstructed FLAME mesh vertices (including expression). - shape
(1, 100)
The FLAME shape code. - exp
(1, 50)
The FLAME expression code. - pose
(1, 6)
The FLAME head (first 3 values) and jaw (last 3 values) poses. - eye_pose
(1, 6)
The FLAME eyeball poses. - tex
(1, 50)
The FLAME parametric texture code. - light
(1, 9, 3)
The estimated SH lighting coefficients. - cam
(6,)
The estimated 6DoF camera pose (yaw, pitch, roll, x, y, z). - img_rendered
(256, 256, 3)
Rendered shape on top of the original image (for visualization purposes only). - mesh_rendered
(256, 256, 3)
Rendered mesh shape with landmarks (for visualization purposes only). - img
(512, 512, 3)
The image on which the FLAME model was fit. - img_aligned
(512, 512, 3)
The aligned image. - parsing
(512, 512, 3)
The face semantic parsing result ofimg
. - parsing_aligned
(512, 512, 3)
The face semantic parsing result ofimg_aligned
. - lmks_dense
(478, 2)
The 478 dense face landmarks from Mediapipe. - lmks_68
(68, 2)
The 68 Dlib format face landmarks. - blendshape_scores
(52,)
The facial expression blendshape scores from Mediapipe.
Example Reconstruction Result (realign=True):
Example Reconstruction Result (realign=False):
</details> <details> <summary><b>Monocular Video-Based Tracking</b></summary>Please follow the example in: ./Example_video-reconstruction.ipynb
from tracker_video import track_video
tracker_cfg = {
'mediapipe_face_landmarker_v2_path': './models/face_landmarker_v2_with_blendshapes.task',
'flame_model_path': './models/FLAME2020/generic_model.pkl',
'flame_lmk_embedding_path': './models/landmark_embedding.npy',
'tex_space_path': './models/FLAME_albedo_from_BFM.npz',
'face_parsing_model_path': './utils/face_parsing/79999_iter.pth',
'uv_coord_mapping_file_path': './models/uv2vert_256.npy',
'template_mesh_file_path': './models/head_template.obj',
'result_img_size': 512,
'device': device,
## following are used for video tracking
'original_fps': 60, # input video fps
'subsample_fps': 30, # subsample fps
'video_path': './assets/IMG_2647.MOV', # example video
'save_path': './output', # tracking result save path
'use_kalman_filter': False, # whether to use Kalman filter
'kalman_filter_measurement_noise_factor': 1e-5, # measurement noise level in Kalman filter
'kalman_filter_process_noise_factor': 1e-5, # process noise level in Kalman filter
}
## Note that, the first frame will take longer time to process
track_video(tracker_cfg)
The results will be saved to the save_path
. The reconstruction result of each frame will be saved to the corresponding [frame_id].npy
file.
π₯οΈ Environment Setup
<details> <summary><b>Details</b></summary>Prerequisites:
- GPU: Nvidia GPU with >= 6GB memory (recommend > 8GB). I tested the code on Nvidia A6000 (48GB) GPU.
- OS: Ubuntu Linux (tested on 22.04 LTS and 24.04 LTS), I haven't tested the code on Windows.
Step 1: Create a conda environment.
conda create --name tracker -y python=3.10
conda activate tracker
Step 2: Install necessary libraries.
Nvidia CUDA compiler (11.7)
conda install -c "nvidia/label/cuda-11.7.1" cuda-toolkit ninja
# (Linux only) ----------
ln -s "$CONDA_PREFIX/lib" "$CONDA_PREFIX/lib64" # to avoid error "/usr/bin/ld: cannot find -lcudart"
# Install NVCC (optional, if the NVCC is not installed successfully try this)
conda install -c conda-forge cudatoolkit=11.7 cudatoolkit-dev=11.7
After install, check NVCC version (should be 11.7):
nvcc --version
PyTorch (2.0 with CUDA)
pip install torch==2.0.1 torchvision --index-url https://download.pytorch.org/whl/cu117
Now let's test if PyTorch is able to access CUDA device, the result should be True
:
python -c "import torch; print(torch.cuda.is_available())"
Some Python packages
pip install -r requirements.txt
Nvidia Differentiable Rasterization: nvdiffrast
Note that, we use nvdiffrast version 0.3.1, other versions may also work but not promised.
# Download the nvdiffrast from their official Github repo
git clone https://github.com/NVlabs/nvdiffrast
# Go to the downloaded directory
cd nvdiffrast
# Install the package
pip install .
# Change the directory back
cd ..
Pytorch3D
Note that, we use pytorch3d version 0.7.8, other versions may also work but not promised.
Installing pytorch3d may take a bit of time.
# Download Pytorch3D from their official Github repo
git clone https://github.com/facebookresearch/pytorch3d
# Go to the downloaded directory
cd pytorch3d
# Install the package
pip install .
# Change the directory back
cd ..
Troubleshoot
Note that the NVCC needs g++ < 12:
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-11 50
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-11 50
sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++-11 50
If there is problem with nvdiffrast, check whether it is related to the EGL header file in the error message. If it is, install the EGL Development Libraries (for Ubuntu/Debian-based systems):
sudo apt-get update
sudo apt-get install libegl1-mesa-dev
Then, uninstall nvdiffrast and reinstall it.
Step 3: Download some necessary model files.
Because of copyright concerns, we cannot re-share any of the following model files. Please follow the instructions to download the necessary model file.
FLAME and DECA
- Download
FLAME 2020 (fixed mouth, improved expressions, more data)
from https://flame.is.tue.mpg.de/ and extract to./models/FLAME2020
- Download the files from: https://github.com/yfeng95/DECA/tree/master/data, and place at
./models/
- Follow https://github.com/TimoBolkart/BFM_to_FLAME to generate the
FLAME_albedo_from_BFM.npz
file and place at./models/
- Download
deca_model.tar
from https://docs.google.com/uc?export=download&id=1rp8kdyLPvErw2dTmqtjISRVvQLj6Yzje, and place at./models/
Mediapipe
- Download
face_landmarker.task
from https://storage.googleapis.com/mediapipe-models/face_landmarker/face_landmarker/float16/1/face_landmarker.task, rename asface_landmarker_v2_with_blendshapes.task
, and save at./models/
The final structure of ./models/
is:
./models
βββ deca_model.tar
βββ face_landmarker_v2_with_blendshapes.task
βββ fixed_displacement_256.npy
βββ FLAME2020
βΒ Β βββ female_model.pkl
βΒ Β βββ generic_model.pkl
βΒ Β βββ male_model.pkl
βΒ Β βββ Readme.pdf
βββ FLAME_albedo_from_BFM.npz
βββ head_template.obj
βββ landmark_embedding.npy
βββ mean_texture.jpg
βββ placeholder.txt
βββ texture_data_256.npy
βββ uv_face_eye_mask.png
βββ uv_face_mask.png
</details>
βοΈ Acknowledgements and Disclaimer
Our code is mainly based on the following repositories:
- FLAME: https://github.com/soubhiksanyal/FLAME_PyTorch
- Nvdiffrast: https://github.com/NVlabs/nvdiffrast
- Pytorch3D: https://github.com/facebookresearch/pytorch3d
- DECA: https://github.com/yfeng95/DECA
- FLAME Photometric Fitting: https://github.com/HavenFeng/photometric_optimization
- 3D Gaussian Splatting: https://github.com/graphdeco-inria/gaussian-splatting
- GaussianAvatars: https://shenhanqian.github.io/gaussian-avatars
- FaceParsing: https://github.com/zllrunning/face-parsing.PyTorch
We want to acknowledge the contributions of the authors of these repositories. We do not claim ownership of any code originating from these repositories, and any modifications we have made are solely for our specific use case. All original rights and attributions remain with the respective authors.
Disclaimer
Our code can be used for research purposes, provided that the terms of the licenses of any third-party code, models, or dependencies are followed. For commercial use, the parts of code we wrote are for free, but please be aware to get permissions from any third-party to use their code, models, or dependencies. We do not assume any responsibility for any issues, damages, or liabilities that may arise from the use of this code. Users are responsible for ensuring compliance with any legal requirements, including licensing terms and conditions, and for verifying that the code is suitable for their intended purposes.