Awesome
Pseudo-Label Selection for label noise (PLS)
Official repository for Is your noise correction noisy? PLS: Robustness to label noise with two stage detection WACV 2023 paper
Dependencies
conda env create -f env.yml
conda activate pls
pytorch=1.7.1, torchvision=8.2, cuda=10.2, python=3.8
Dataset setup
Set the path to your datasets in the mypath.py
file
Download the web fine-grained from here
How to use
Run PLS on CIFAR-100 with 40% of ID noise
python main.py --dataset cifar100 --epochs 200 --batch-size 256 --net preresnet18 --lr 0.1 --exp-name cifar100_40idnoise --ood-noise 0.0 --id-noise 0.4 --mixup --warmup 30 --cont
The various train*.sh
files list multiple example commands to run PLS on CIFAR-100, miniImageNet corrupted with web noise and the web fine-grained datasets.
Train on a custom dataset
Edit the datasets/custom.py
(dataset creation), the utils.py
(mean, std and image size) and the mypath.py
(dataset path) files to fit your custom dataset and specify the --dataset custom
command when running the code.
Some results from the paper
Controlled Noisy Web Labels (CNWL) dataset
r_out | 0.2 | 0.4 | 0.6 | 0.8 |
---|---|---|---|---|
top-1 acc | 63.10 | 60.02 | 54.41 | 46.51 |
std 3 runs | 0.14 | 0.15 | 0.49 | 0.20 |
CIFAR-100 ID noise
r_in | 0.0 | 0.2 | 0.5 | 0.8 |
---|---|---|---|---|
top-1 acc | 78.85 | 80.03 | 76.48 | 63.33 |
std 3 runs | 0.21 | 0.15 | 0.25 | 0.38 |
CIFAR-100 ID and OOD noise (ImageNet32)
r_in | 0.2 | 0.2 | 0.2 | 0.4 |
---|---|---|---|---|
r_out | 0.2 | 0.4 | 0.6 | 0.4 |
top-1 acc | 76.29 | 72.06 | 57.78 | 56.92 |
std 3 runs | 0.28 | 0.19 | 0.26 | 0.49 |
Web-fg datasets
dataset | web-aircraft | web-bird | web-car |
---|---|---|---|
top-1 acc | 87.58 | 79.00 | 86.27 |
Cite our paper if it helps your research
@inproceedings{2023_WACV_PLS,
title="{Is your noise correction noisy? PLS: Robustness to label noise with two stage detection}",
author="Albert, Paul and Arazo, Eric and Kirshna, Tarun and O'Connor, Noel E and McGuinness, Kevin",
booktitle="{Winter Conference on Applications of Computer Vision (WACV)}",
year={2023}
}