Home

Awesome

News

It's been two months and I think I've finally discovered the True reasons why Simsiam/BYOL avoids collapsed solutions using stop gradient and predictor!!! Follow me on twitter and stay tuned!

SimSiam

A PyTorch implementation for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He

Dependencies

If you don't have python 3 environment:

conda create -n simsiam python=3.8
conda activate simsiam

Then install the required packages:

pip install -r requirements.txt

Run SimSiam

CUDA_VISIBLE_DEVICES=0 python main.py --data_dir ../Data/ --log_dir ../logs/ -c configs/simsiam_cifar.yaml --ckpt_dir ~/.cache/ --hide_progress

The data folder ../Data/ should look like this:

➜  ~ tree ../Data/
├── cifar-10-batches-py
│   ├── batches.meta
│   ├── data_batch_1
│   ├── ...
└── stl10_binary
    ├── ...
Training: 100%|#################################################################| 800/800 [11:46:06<00:00, 52.96s/it, epoch=799, accuracy=90.3]
Model saved to /root/.cache/simsiam-cifar10-experiment-resnet18_cifar_variant1.pth
Evaluating: 100%|##########################################################################################################| 100/100 [08:29<00:00,  5.10s/it]
Accuracy = 90.83
Log file has been saved to ../logs/completed-simsiam-cifar10-experiment-resnet18_cifar_variant1(2)

To evaluate separately:

CUDA_VISIBLE_DEVICES=4 python linear_eval.py --data_dir ../Data/ --log_dir ../logs/ -c configs/simsiam_cifar_eval.yaml --ckpt_dir ~/.cache/ --hide_progress --eval_from ~/simsiam-cifar10-experiment-resnet18_cifar_variant1.pth

creating file ../logs/in-progress_0111061045_simsiam-cifar10-experiment-resnet18_cifar_variant1
Evaluating: 100%|##########################################################################################################| 200/200 [16:52<00:00,  5.06s/it]
Accuracy = 90.87

simsiam-cifar10-800e

export DATA="/path/to/your/datasets/" and export LOG="/path/to/your/log/" will save you the trouble of entering the folder name every single time!

Run SimCLR

CUDA_VISIBLE_DEVICES=1 python main.py --data_dir ../Data/ --log_dir ../logs/ -c configs/simclr_cifar.yaml --ckpt_dir ~/.cache/ --hide_progress

Run BYOL

CUDA_VISIBLE_DEVICES=2 python main.py --data_dir ../Data/ --log_dir ../logs/ -c configs/byol_cifar.yaml --ckpt_dir ~/.cache/ --hide_progress

TODO

If you find this repo helpful, please consider star so that I have the motivation to improve it.