Home

Awesome

简体中文 | English

PaddleClas

Introduction

PaddleClas is a toolset for image classification tasks prepared for the industry and academia. It helps users train better computer vision models and apply them in real scenarios.

Recent update

Features

Community

<div align="center"> <img src="./docs/images/joinus.png" width = "200" height = "200" /> </div> <div align="center"> <img src="./docs/images/qq_group.png" width = "200" /> </div>

Tutorials

<a name="Model_zoo_overview"></a>

Model zoo overview

Based on the ImageNet-1k classification dataset, the 24 classification network structures supported by PaddleClas and the corresponding 122 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters. The evaluation environment is as follows.

Curves of accuracy to the inference time of common server-side models are shown as follows.

Curves of accuracy to the inference time and storage size of common mobile-side models are shown as follows.

<a name="ResNet_and_Vd_series"></a>

ResNet and Vd series

Accuracy and inference time metrics of ResNet and Vd series models are shown as follows. More detailed information can be refered to ResNet and Vd series tutorial.

ModelTop-1 AccTop-5 Acctime(ms)<br>bs=1time(ms)<br>bs=4Flops(G)Params(M)Download Address
ResNet180.70980.89921.456063.563053.6611.69Download link
ResNet18_vd0.72260.90801.545573.853634.1411.71Download link
ResNet340.74570.92142.349575.898217.3621.8Download link
ResNet34_vd0.75980.92982.434276.222577.3921.82Download link
ResNet34_vd_ssld0.79720.94902.434276.222577.3921.82Download link
ResNet500.76500.93003.477127.844218.1925.56Download link
ResNet50_vc0.78350.94033.523468.107258.6725.58Download link
ResNet50_vd0.79120.94443.531318.090578.6725.58Download link
ResNet50_vd_v20.79840.94933.531318.090578.6725.58Download link
ResNet1010.77560.93646.0712513.4057315.5244.55Download link
ResNet101_vd0.80170.94976.1170413.7622216.144.57Download link
ResNet1520.78260.93968.5019819.1707323.0560.19Download link
ResNet152_vd0.80590.95308.5437619.5215723.5360.21Download link
ResNet200_vd0.80930.953310.8061925.0173130.5374.74Download link
ResNet50_vd_<br>ssld0.82390.96103.531318.090578.6725.58Download link
ResNet50_vd_<br>ssld_v20.83000.96403.531318.090578.6725.58Download link
ResNet101_vd_<br>ssld0.83730.96696.1170413.7622216.144.57Download link

<a name="Mobile_series"></a>

Mobile series

Accuracy and inference time metrics of Mobile series models are shown as follows. More detailed information can be refered to Mobile series tutorial.

ModelTop-1 AccTop-5 AccSD855 time(ms)<br>bs=1Flops(G)Params(M)Model storage size(M)Download Address
MobileNetV1_<br>x0_250.51430.75463.219850.070.461.9Download link
MobileNetV1_<br>x0_50.63520.84739.5795990.281.315.2Download link
MobileNetV1_<br>x0_750.68810.882319.4363990.632.5510Download link
MobileNetV10.70990.896832.5230481.114.1916Download link
MobileNetV1_<br>ssld0.77890.939432.5230481.114.1916Download link
MobileNetV2_<br>x0_250.53210.76523.799250.051.56.1Download link
MobileNetV2_<br>x0_50.65030.85728.70210.171.937.8Download link
MobileNetV2_<br>x0_750.69830.890115.5313510.352.5810Download link
MobileNetV20.72150.906523.3176990.63.4414Download link
MobileNetV2_<br>x1_50.74120.916745.6238481.326.7626Download link
MobileNetV2_<br>x2_00.75230.925874.2916492.3211.1343Download link
MobileNetV2_<br>ssld0.76740.933923.3176990.63.4414Download link
MobileNetV3_<br>large_x1_250.76410.929528.2177010.7147.4429Download link
MobileNetV3_<br>large_x1_00.75320.923119.308350.455.4721Download link
MobileNetV3_<br>large_x0_750.73140.910813.56460.2963.9116Download link
MobileNetV3_<br>large_x0_50.69240.88527.493150.1382.6711Download link
MobileNetV3_<br>large_x0_350.64320.85465.136950.0772.18.6Download link
MobileNetV3_<br>small_x1_250.70670.89519.27450.1953.6214Download link
MobileNetV3_<br>small_x1_00.68240.88066.54630.1232.9412Download link
MobileNetV3_<br>small_x0_750.66020.86335.284350.0882.379.6Download link
MobileNetV3_<br>small_x0_50.59210.81523.351650.0431.97.8Download link
MobileNetV3_<br>small_x0_350.53030.76372.63520.0261.666.9Download link
MobileNetV3_<br>small_x0_35_ssld0.55550.77712.63520.0261.666.9Download link
MobileNetV3_<br>large_x1_0_ssld0.78960.944819.308350.455.4721Download link
MobileNetV3_large_<br>x1_0_ssld_int80.7605-14.395--10Download link
MobileNetV3_small_<br>x1_0_ssld0.71290.90106.54630.1232.9412Download link
ShuffleNetV20.68800.884510.9410.282.269Download link
ShuffleNetV2_<br>x0_250.49900.73792.3290.030.62.7Download link
ShuffleNetV2_<br>x0_330.53730.77052.643350.040.642.8Download link
ShuffleNetV2_<br>x0_50.60320.82264.26130.081.365.6Download link
ShuffleNetV2_<br>x1_50.71630.901519.35220.583.4714Download link
ShuffleNetV2_<br>x2_00.73150.912034.7701491.127.3228Download link
ShuffleNetV2_<br>swish0.70030.891716.0231510.292.269.1Download link
DARTS_GS_4M0.75230.921547.2049481.044.7721Download link
DARTS_GS_6M0.76030.927953.7208021.225.6924Download link
GhostNet_<br>x0_50.66880.86955.71430.0822.610Download link
GhostNet_<br>x1_00.74020.916513.55870.2945.220Download link
GhostNet_<br>x1_30.75790.925419.98250.447.329Download link
GhostNet_<br>x1_3_ssld0.79380.944919.98250.447.329Download link

<a name="SEResNeXt_and_Res2Net_series"></a>

SEResNeXt and Res2Net series

Accuracy and inference time metrics of SEResNeXt and Res2Net series models are shown as follows. More detailed information can be refered to SEResNext and_Res2Net series tutorial.

ModelTop-1 AccTop-5 Acctime(ms)<br>bs=1time(ms)<br>bs=4Flops(G)Params(M)Download Address
Res2Net50_<br>26w_4s0.79330.94574.471889.657228.5225.7Download link
Res2Net50_vd_<br>26w_4s0.79750.94914.527129.932478.3725.06Download link
Res2Net50_<br>14w_8s0.79460.94705.402610.602739.0125.72Download link
Res2Net101_vd_<br>26w_4s0.80640.95228.0872917.3120816.6745.22Download link
Res2Net200_vd_<br>26w_4s0.81210.957114.6780632.3503231.4976.21Download link
Res2Net200_vd_<br>26w_4s_ssld0.85130.974214.6780632.3503231.4976.21Download link
ResNeXt50_<br>32x4d0.77750.93827.5632710.61348.0223.64Download link
ResNeXt50_vd_<br>32x4d0.79560.94627.6204411.033858.523.66Download link
ResNeXt50_<br>64x4d0.78430.941313.8096218.471215.0642.36Download link
ResNeXt50_vd_<br>64x4d0.80120.948613.9444918.8875915.5442.38Download link
ResNeXt101_<br>32x4d0.78650.941916.2150319.9656815.0141.54Download link
ResNeXt101_vd_<br>32x4d0.80330.951216.2810320.2561115.4941.56Download link
ResNeXt101_<br>64x4d0.78350.945230.478836.2980129.0578.12Download link
ResNeXt101_vd_<br>64x4d0.80780.952030.4045636.7732429.5378.14Download link
ResNeXt152_<br>32x4d0.78980.943324.8629929.3676422.0156.28Download link
ResNeXt152_vd_<br>32x4d0.80720.952025.0325830.0898722.4956.3Download link
ResNeXt152_<br>64x4d0.79510.947146.756456.3410843.03107.57Download link
ResNeXt152_vd_<br>64x4d0.81080.953447.1863857.1625743.52107.59Download link
SE_ResNet18_vd0.73330.91381.76914.198774.1411.8Download link
SE_ResNet34_vd0.76510.93202.885597.032917.8421.98Download link
SE_ResNet50_vd0.79520.94754.2839310.388468.6728.09Download link
SE_ResNeXt50_<br>32x4d0.78440.93968.7412113.5638.0226.16Download link
SE_ResNeXt50_vd_<br>32x4d0.80240.94899.1713414.7619210.7626.28Download link
SE_ResNeXt101_<br>32x4d0.79120.942018.8260425.3181415.0246.28Download link
SENet154_vd0.81400.954853.7979466.3168445.83114.29Download link

<a name="DPN_and_DenseNet_series"></a>

DPN and DenseNet series

Accuracy and inference time metrics of DPN and DenseNet series models are shown as follows. More detailed information can be refered to DPN and DenseNet series tutorial.

ModelTop-1 AccTop-5 Acctime(ms)<br>bs=1time(ms)<br>bs=4Flops(G)Params(M)Download Address
DenseNet1210.75660.92584.404479.326235.697.98Download link
DenseNet1610.78570.941410.3915222.1555515.4928.68Download link
DenseNet1690.76810.93316.4359812.988326.7414.15Download link
DenseNet2010.77630.93668.2065217.458388.6120.01Download link
DenseNet2640.77960.938512.1472226.2770711.5433.37Download link
DPN680.76780.934311.6491512.828074.0310.78Download link
DPN920.79850.948018.1574623.8754512.5436.29Download link
DPN980.80590.951021.1819633.2392522.2258.46Download link
DPN1070.80890.953227.6204652.6535335.0682.97Download link
DPN1310.80700.951428.3311946.1943930.5175.36Download link

<a name="HRNet_series"></a>

HRNet series

Accuracy and inference time metrics of HRNet series models are shown as follows. More detailed information can be refered to Mobile series tutorial.

ModelTop-1 AccTop-5 Acctime(ms)<br>bs=1time(ms)<br>bs=4Flops(G)Params(M)Download Address
HRNet_W18_C0.76920.93397.4063613.297524.1421.29Download link
HRNet_W18_C_ssld0.811620.958047.4063613.297524.1421.29Download link
HRNet_W30_C0.78040.94029.5759417.3548516.2337.71Download link
HRNet_W32_C0.78280.94249.4980717.7292117.8641.23Download link
HRNet_W40_C0.78770.944712.1220225.6818425.4157.55Download link
HRNet_W44_C0.79000.945113.1985832.2520229.7967.06Download link
HRNet_W48_C0.78950.944213.7076134.4357234.5877.47Download link
HRNet_W48_C_ssld0.83630.968213.7076134.4357234.5877.47Download link
HRNet_W64_C0.79300.946117.5752747.953357.83128.06Download link

<a name="Inception_series"></a>

Inception series

Accuracy and inference time metrics of Inception series models are shown as follows. More detailed information can be refered to Inception series tutorial.

ModelTop-1 AccTop-5 Acctime(ms)<br>bs=1time(ms)<br>bs=4Flops(G)Params(M)Download Address
GoogLeNet0.70700.89661.880384.488822.888.46Download link
Xception410.79300.94534.9693917.0136116.7422.69Download link
Xception41_deeplab0.79550.94385.3354117.5593818.1626.73Download link
Xception650.81000.95497.2615825.8877825.9535.48Download link
Xception65_deeplab0.80320.94497.6020826.0369927.3739.52Download link
Xception710.81110.95458.7245731.5554931.7737.28Download link
InceptionV30.79140.94596.6405413.5363011.4623.83Download link
InceptionV40.80770.952612.9934225.2341624.5742.68Download link

<a name="EfficientNet_and_ResNeXt101_wsl_series"></a>

EfficientNet and ResNeXt101_wsl series

Accuracy and inference time metrics of EfficientNet and ResNeXt101_wsl series models are shown as follows. More detailed information can be refered to EfficientNet and ResNeXt101_wsl series tutorial.

ModelTop-1 AccTop-5 Acctime(ms)<br>bs=1time(ms)<br>bs=4Flops(G)Params(M)Download Address
ResNeXt101_<br>32x8d_wsl0.82550.967418.5252834.2531929.1478.44Download link
ResNeXt101_<br>32x16d_wsl0.84240.972625.6039571.8838457.55152.66Download link
ResNeXt101_<br>32x32d_wsl0.84970.975954.87396160.04337115.17303.11Download link
ResNeXt101_<br>32x48d_wsl0.85370.976999.01698256315.91261173.58456.2Download link
Fix_ResNeXt101_<br>32x48d_wsl0.86260.9797160.0838242595.99296354.23456.2Download link
EfficientNetB00.77380.93313.4426.114760.725.1Download link
EfficientNetB10.79150.94415.33229.417951.277.52Download link
EfficientNetB20.79850.94746.2935110.957021.858.81Download link
EfficientNetB30.81150.95417.6774916.532883.4311.84Download link
EfficientNetB40.82850.962312.1589430.945678.2918.76Download link
EfficientNetB50.83620.967220.4857161.6025219.5129.61Download link
EfficientNetB60.84000.968832.62402-36.2742Download link
EfficientNetB70.84300.968953.93823-72.3564.92Download link
EfficientNetB0_<br>small0.75800.92582.30764.718860.724.65Download link

<a name="ResNeSt_and_RegNet_series"></a>

ResNeSt and RegNet series

Accuracy and inference time metrics of ResNeSt and RegNet series models are shown as follows. More detailed information can be refered to ResNeSt and RegNet series tutorial.

ModelTop-1 AccTop-5 Acctime(ms)<br>bs=1time(ms)<br>bs=4Flops(G)Params(M)Download Address
ResNeSt50_<br>fast_1s1x64d0.80350.95283.454058.726808.6826.3Download link
ResNeSt500.81020.95426.690428.0166410.7827.5Download link
RegNetX_4GF0.7850.94166.4647811.19862822.1Download link

<a name="Others"></a>

Others

Accuracy and inference time metrics of AlexNet, SqueezeNet series, VGG series, DarkNet53, ResNet50_ACNet and ResNet50_ACNet_deploy models are shown as follows. More detailed information can be refered to Others.

ModelTop-1 AccTop-5 Acctime(ms)<br>bs=1time(ms)<br>bs=4Flops(G)Params(M)Download Address
AlexNet0.5670.7921.449932.466961.37061.090Download link
SqueezeNet1_00.5960.8170.967362.532211.5501.240Download link
SqueezeNet1_10.6010.8190.760321.8770.6901.230Download link
VGG110.6930.8913.904129.5114715.090132.850Download link
VGG130.7000.8944.6468412.6155822.480133.030Download link
VGG160.7200.9075.6176916.4006430.810138.340Download link
VGG190.7260.9096.6522120.433439.130143.650Download link
DarkNet530.7800.9414.1082912.171418.58041.600Download link
ResNet50_ACNet0.7670.9325.3339510.9684310.73033.110Download link
ResNet50_ACNet<br>_deploy0.7670.9323.491617.783748.19025.550Download link

<a name="License"></a>

License

PaddleClas is released under the <a href="https://github.com/PaddlePaddle/PaddleClas/blob/master/LICENSE">Apache 2.0 license</a>

<a name="Contribution"></a>

Contribution

Contributions are highly welcomed and we would really appreciate your feedback!!