Awesome
简体中文 | English
PaddleClas
Introduction
PaddleClas is a toolset for image classification tasks prepared for the industry and academia. It helps users train better computer vision models and apply them in real scenarios.
Recent update
- 2020.11.23 Add
GhostNet_x1_3_ssld
pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 79.38%. - 2020.11.09 Add
InceptionV3
architecture and pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 79.1%. - 2020.10.12 Add Paddle-Lite demo.
- 2020.10.10 Add cpp inference demo and improve FAQ tutorial.
- 2020.09.17 Add
HRNet_W48_C_ssld
pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.62%. AddResNet34_vd_ssld
pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 79.72%. - 2020.09.07 Add
HRNet_W18_C_ssld
pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 81.16%. - 2020.07.14 Add
Res2Net200_vd_26w_4s_ssld
pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 85.13%. AddFix_ResNet50_vd_ssld_v2
pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 84.00%. - 2020.06.17 Add English documents.
- 2020.06.12 Add support for training and evaluation on Windows or CPU.
- more
Features
-
Rich model zoo. Based on the ImageNet-1k classification dataset, PaddleClas provides 24 series of classification network structures and training configurations, 122 models' pretrained weights and their evaluation metrics.
-
SSLD Knowledge Distillation. Based on this SSLD distillation strategy, the top-1 acc of the distilled model is generally increased by more than 3%.
-
Data augmentation: PaddleClas provides detailed introduction of 8 data augmentation algorithms such as AutoAugment, Cutout, Cutmix, code reproduction and effect evaluation in a unified experimental environment.
-
Pretrained model with 100,000 categories: Based on
ResNet50_vd
model, Baidu open sourced theResNet50_vd
pretrained model trained on a 100,000-category dataset. In some practical scenarios, the accuracy based on the pretrained weights can be increased by up to 30%. -
A variety of training modes, including multi-machine training, mixed precision training, etc.
-
A variety of inference and deployment solutions, including TensorRT inference, Paddle-Lite inference, model service deployment, model quantification, Paddle Hub, etc.
-
Support Linux, Windows, macOS and other systems.
Community
- Scan the QR code below with your Wechat and send the message
分类
out, then you will be invited into the official technical exchange group.
- You can also scan the QQ group QR code to enter the PaddleClas QQ group. Look forward to your participation.
Tutorials
- Installation
- Quick start PaddleClas in 30 minutes
- Model introduction and model zoo
- Model zoo overview
- ResNet and Vd series
- Mobile series
- SEResNeXt and Res2Net series
- DPN and DenseNet series
- HRNet series
- Inception series
- EfficientNet and ResNeXt101_wsl series
- ResNeSt and RegNet series
- Others
- HS-ResNet: arxiv link: https://arxiv.org/pdf/2010.07621.pdf. Code and models are coming soon!
- Model training/evaluation
- Model prediction/inference
- Advanced tutorials
- Applications
- FAQ
- Competition support
- License
- Contribution
<a name="Model_zoo_overview"></a>
Model zoo overview
Based on the ImageNet-1k classification dataset, the 24 classification network structures supported by PaddleClas and the corresponding 122 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters. The evaluation environment is as follows.
- CPU evaluation environment is based on Snapdragon 855 (SD855).
- The GPU evaluation speed is measured by running 500 times under the FP32+TensorRT configuration (excluding the warmup time of the first 10 times).
Curves of accuracy to the inference time of common server-side models are shown as follows.
Curves of accuracy to the inference time and storage size of common mobile-side models are shown as follows.
<a name="ResNet_and_Vd_series"></a>
ResNet and Vd series
Accuracy and inference time metrics of ResNet and Vd series models are shown as follows. More detailed information can be refered to ResNet and Vd series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
ResNet18 | 0.7098 | 0.8992 | 1.45606 | 3.56305 | 3.66 | 11.69 | Download link |
ResNet18_vd | 0.7226 | 0.9080 | 1.54557 | 3.85363 | 4.14 | 11.71 | Download link |
ResNet34 | 0.7457 | 0.9214 | 2.34957 | 5.89821 | 7.36 | 21.8 | Download link |
ResNet34_vd | 0.7598 | 0.9298 | 2.43427 | 6.22257 | 7.39 | 21.82 | Download link |
ResNet34_vd_ssld | 0.7972 | 0.9490 | 2.43427 | 6.22257 | 7.39 | 21.82 | Download link |
ResNet50 | 0.7650 | 0.9300 | 3.47712 | 7.84421 | 8.19 | 25.56 | Download link |
ResNet50_vc | 0.7835 | 0.9403 | 3.52346 | 8.10725 | 8.67 | 25.58 | Download link |
ResNet50_vd | 0.7912 | 0.9444 | 3.53131 | 8.09057 | 8.67 | 25.58 | Download link |
ResNet50_vd_v2 | 0.7984 | 0.9493 | 3.53131 | 8.09057 | 8.67 | 25.58 | Download link |
ResNet101 | 0.7756 | 0.9364 | 6.07125 | 13.40573 | 15.52 | 44.55 | Download link |
ResNet101_vd | 0.8017 | 0.9497 | 6.11704 | 13.76222 | 16.1 | 44.57 | Download link |
ResNet152 | 0.7826 | 0.9396 | 8.50198 | 19.17073 | 23.05 | 60.19 | Download link |
ResNet152_vd | 0.8059 | 0.9530 | 8.54376 | 19.52157 | 23.53 | 60.21 | Download link |
ResNet200_vd | 0.8093 | 0.9533 | 10.80619 | 25.01731 | 30.53 | 74.74 | Download link |
ResNet50_vd_<br>ssld | 0.8239 | 0.9610 | 3.53131 | 8.09057 | 8.67 | 25.58 | Download link |
ResNet50_vd_<br>ssld_v2 | 0.8300 | 0.9640 | 3.53131 | 8.09057 | 8.67 | 25.58 | Download link |
ResNet101_vd_<br>ssld | 0.8373 | 0.9669 | 6.11704 | 13.76222 | 16.1 | 44.57 | Download link |
<a name="Mobile_series"></a>
Mobile series
Accuracy and inference time metrics of Mobile series models are shown as follows. More detailed information can be refered to Mobile series tutorial.
Model | Top-1 Acc | Top-5 Acc | SD855 time(ms)<br>bs=1 | Flops(G) | Params(M) | Model storage size(M) | Download Address |
---|---|---|---|---|---|---|---|
MobileNetV1_<br>x0_25 | 0.5143 | 0.7546 | 3.21985 | 0.07 | 0.46 | 1.9 | Download link |
MobileNetV1_<br>x0_5 | 0.6352 | 0.8473 | 9.579599 | 0.28 | 1.31 | 5.2 | Download link |
MobileNetV1_<br>x0_75 | 0.6881 | 0.8823 | 19.436399 | 0.63 | 2.55 | 10 | Download link |
MobileNetV1 | 0.7099 | 0.8968 | 32.523048 | 1.11 | 4.19 | 16 | Download link |
MobileNetV1_<br>ssld | 0.7789 | 0.9394 | 32.523048 | 1.11 | 4.19 | 16 | Download link |
MobileNetV2_<br>x0_25 | 0.5321 | 0.7652 | 3.79925 | 0.05 | 1.5 | 6.1 | Download link |
MobileNetV2_<br>x0_5 | 0.6503 | 0.8572 | 8.7021 | 0.17 | 1.93 | 7.8 | Download link |
MobileNetV2_<br>x0_75 | 0.6983 | 0.8901 | 15.531351 | 0.35 | 2.58 | 10 | Download link |
MobileNetV2 | 0.7215 | 0.9065 | 23.317699 | 0.6 | 3.44 | 14 | Download link |
MobileNetV2_<br>x1_5 | 0.7412 | 0.9167 | 45.623848 | 1.32 | 6.76 | 26 | Download link |
MobileNetV2_<br>x2_0 | 0.7523 | 0.9258 | 74.291649 | 2.32 | 11.13 | 43 | Download link |
MobileNetV2_<br>ssld | 0.7674 | 0.9339 | 23.317699 | 0.6 | 3.44 | 14 | Download link |
MobileNetV3_<br>large_x1_25 | 0.7641 | 0.9295 | 28.217701 | 0.714 | 7.44 | 29 | Download link |
MobileNetV3_<br>large_x1_0 | 0.7532 | 0.9231 | 19.30835 | 0.45 | 5.47 | 21 | Download link |
MobileNetV3_<br>large_x0_75 | 0.7314 | 0.9108 | 13.5646 | 0.296 | 3.91 | 16 | Download link |
MobileNetV3_<br>large_x0_5 | 0.6924 | 0.8852 | 7.49315 | 0.138 | 2.67 | 11 | Download link |
MobileNetV3_<br>large_x0_35 | 0.6432 | 0.8546 | 5.13695 | 0.077 | 2.1 | 8.6 | Download link |
MobileNetV3_<br>small_x1_25 | 0.7067 | 0.8951 | 9.2745 | 0.195 | 3.62 | 14 | Download link |
MobileNetV3_<br>small_x1_0 | 0.6824 | 0.8806 | 6.5463 | 0.123 | 2.94 | 12 | Download link |
MobileNetV3_<br>small_x0_75 | 0.6602 | 0.8633 | 5.28435 | 0.088 | 2.37 | 9.6 | Download link |
MobileNetV3_<br>small_x0_5 | 0.5921 | 0.8152 | 3.35165 | 0.043 | 1.9 | 7.8 | Download link |
MobileNetV3_<br>small_x0_35 | 0.5303 | 0.7637 | 2.6352 | 0.026 | 1.66 | 6.9 | Download link |
MobileNetV3_<br>small_x0_35_ssld | 0.5555 | 0.7771 | 2.6352 | 0.026 | 1.66 | 6.9 | Download link |
MobileNetV3_<br>large_x1_0_ssld | 0.7896 | 0.9448 | 19.30835 | 0.45 | 5.47 | 21 | Download link |
MobileNetV3_large_<br>x1_0_ssld_int8 | 0.7605 | - | 14.395 | - | - | 10 | Download link |
MobileNetV3_small_<br>x1_0_ssld | 0.7129 | 0.9010 | 6.5463 | 0.123 | 2.94 | 12 | Download link |
ShuffleNetV2 | 0.6880 | 0.8845 | 10.941 | 0.28 | 2.26 | 9 | Download link |
ShuffleNetV2_<br>x0_25 | 0.4990 | 0.7379 | 2.329 | 0.03 | 0.6 | 2.7 | Download link |
ShuffleNetV2_<br>x0_33 | 0.5373 | 0.7705 | 2.64335 | 0.04 | 0.64 | 2.8 | Download link |
ShuffleNetV2_<br>x0_5 | 0.6032 | 0.8226 | 4.2613 | 0.08 | 1.36 | 5.6 | Download link |
ShuffleNetV2_<br>x1_5 | 0.7163 | 0.9015 | 19.3522 | 0.58 | 3.47 | 14 | Download link |
ShuffleNetV2_<br>x2_0 | 0.7315 | 0.9120 | 34.770149 | 1.12 | 7.32 | 28 | Download link |
ShuffleNetV2_<br>swish | 0.7003 | 0.8917 | 16.023151 | 0.29 | 2.26 | 9.1 | Download link |
DARTS_GS_4M | 0.7523 | 0.9215 | 47.204948 | 1.04 | 4.77 | 21 | Download link |
DARTS_GS_6M | 0.7603 | 0.9279 | 53.720802 | 1.22 | 5.69 | 24 | Download link |
GhostNet_<br>x0_5 | 0.6688 | 0.8695 | 5.7143 | 0.082 | 2.6 | 10 | Download link |
GhostNet_<br>x1_0 | 0.7402 | 0.9165 | 13.5587 | 0.294 | 5.2 | 20 | Download link |
GhostNet_<br>x1_3 | 0.7579 | 0.9254 | 19.9825 | 0.44 | 7.3 | 29 | Download link |
GhostNet_<br>x1_3_ssld | 0.7938 | 0.9449 | 19.9825 | 0.44 | 7.3 | 29 | Download link |
<a name="SEResNeXt_and_Res2Net_series"></a>
SEResNeXt and Res2Net series
Accuracy and inference time metrics of SEResNeXt and Res2Net series models are shown as follows. More detailed information can be refered to SEResNext and_Res2Net series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
Res2Net50_<br>26w_4s | 0.7933 | 0.9457 | 4.47188 | 9.65722 | 8.52 | 25.7 | Download link |
Res2Net50_vd_<br>26w_4s | 0.7975 | 0.9491 | 4.52712 | 9.93247 | 8.37 | 25.06 | Download link |
Res2Net50_<br>14w_8s | 0.7946 | 0.9470 | 5.4026 | 10.60273 | 9.01 | 25.72 | Download link |
Res2Net101_vd_<br>26w_4s | 0.8064 | 0.9522 | 8.08729 | 17.31208 | 16.67 | 45.22 | Download link |
Res2Net200_vd_<br>26w_4s | 0.8121 | 0.9571 | 14.67806 | 32.35032 | 31.49 | 76.21 | Download link |
Res2Net200_vd_<br>26w_4s_ssld | 0.8513 | 0.9742 | 14.67806 | 32.35032 | 31.49 | 76.21 | Download link |
ResNeXt50_<br>32x4d | 0.7775 | 0.9382 | 7.56327 | 10.6134 | 8.02 | 23.64 | Download link |
ResNeXt50_vd_<br>32x4d | 0.7956 | 0.9462 | 7.62044 | 11.03385 | 8.5 | 23.66 | Download link |
ResNeXt50_<br>64x4d | 0.7843 | 0.9413 | 13.80962 | 18.4712 | 15.06 | 42.36 | Download link |
ResNeXt50_vd_<br>64x4d | 0.8012 | 0.9486 | 13.94449 | 18.88759 | 15.54 | 42.38 | Download link |
ResNeXt101_<br>32x4d | 0.7865 | 0.9419 | 16.21503 | 19.96568 | 15.01 | 41.54 | Download link |
ResNeXt101_vd_<br>32x4d | 0.8033 | 0.9512 | 16.28103 | 20.25611 | 15.49 | 41.56 | Download link |
ResNeXt101_<br>64x4d | 0.7835 | 0.9452 | 30.4788 | 36.29801 | 29.05 | 78.12 | Download link |
ResNeXt101_vd_<br>64x4d | 0.8078 | 0.9520 | 30.40456 | 36.77324 | 29.53 | 78.14 | Download link |
ResNeXt152_<br>32x4d | 0.7898 | 0.9433 | 24.86299 | 29.36764 | 22.01 | 56.28 | Download link |
ResNeXt152_vd_<br>32x4d | 0.8072 | 0.9520 | 25.03258 | 30.08987 | 22.49 | 56.3 | Download link |
ResNeXt152_<br>64x4d | 0.7951 | 0.9471 | 46.7564 | 56.34108 | 43.03 | 107.57 | Download link |
ResNeXt152_vd_<br>64x4d | 0.8108 | 0.9534 | 47.18638 | 57.16257 | 43.52 | 107.59 | Download link |
SE_ResNet18_vd | 0.7333 | 0.9138 | 1.7691 | 4.19877 | 4.14 | 11.8 | Download link |
SE_ResNet34_vd | 0.7651 | 0.9320 | 2.88559 | 7.03291 | 7.84 | 21.98 | Download link |
SE_ResNet50_vd | 0.7952 | 0.9475 | 4.28393 | 10.38846 | 8.67 | 28.09 | Download link |
SE_ResNeXt50_<br>32x4d | 0.7844 | 0.9396 | 8.74121 | 13.563 | 8.02 | 26.16 | Download link |
SE_ResNeXt50_vd_<br>32x4d | 0.8024 | 0.9489 | 9.17134 | 14.76192 | 10.76 | 26.28 | Download link |
SE_ResNeXt101_<br>32x4d | 0.7912 | 0.9420 | 18.82604 | 25.31814 | 15.02 | 46.28 | Download link |
SENet154_vd | 0.8140 | 0.9548 | 53.79794 | 66.31684 | 45.83 | 114.29 | Download link |
<a name="DPN_and_DenseNet_series"></a>
DPN and DenseNet series
Accuracy and inference time metrics of DPN and DenseNet series models are shown as follows. More detailed information can be refered to DPN and DenseNet series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
DenseNet121 | 0.7566 | 0.9258 | 4.40447 | 9.32623 | 5.69 | 7.98 | Download link |
DenseNet161 | 0.7857 | 0.9414 | 10.39152 | 22.15555 | 15.49 | 28.68 | Download link |
DenseNet169 | 0.7681 | 0.9331 | 6.43598 | 12.98832 | 6.74 | 14.15 | Download link |
DenseNet201 | 0.7763 | 0.9366 | 8.20652 | 17.45838 | 8.61 | 20.01 | Download link |
DenseNet264 | 0.7796 | 0.9385 | 12.14722 | 26.27707 | 11.54 | 33.37 | Download link |
DPN68 | 0.7678 | 0.9343 | 11.64915 | 12.82807 | 4.03 | 10.78 | Download link |
DPN92 | 0.7985 | 0.9480 | 18.15746 | 23.87545 | 12.54 | 36.29 | Download link |
DPN98 | 0.8059 | 0.9510 | 21.18196 | 33.23925 | 22.22 | 58.46 | Download link |
DPN107 | 0.8089 | 0.9532 | 27.62046 | 52.65353 | 35.06 | 82.97 | Download link |
DPN131 | 0.8070 | 0.9514 | 28.33119 | 46.19439 | 30.51 | 75.36 | Download link |
<a name="HRNet_series"></a>
HRNet series
Accuracy and inference time metrics of HRNet series models are shown as follows. More detailed information can be refered to Mobile series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
HRNet_W18_C | 0.7692 | 0.9339 | 7.40636 | 13.29752 | 4.14 | 21.29 | Download link |
HRNet_W18_C_ssld | 0.81162 | 0.95804 | 7.40636 | 13.29752 | 4.14 | 21.29 | Download link |
HRNet_W30_C | 0.7804 | 0.9402 | 9.57594 | 17.35485 | 16.23 | 37.71 | Download link |
HRNet_W32_C | 0.7828 | 0.9424 | 9.49807 | 17.72921 | 17.86 | 41.23 | Download link |
HRNet_W40_C | 0.7877 | 0.9447 | 12.12202 | 25.68184 | 25.41 | 57.55 | Download link |
HRNet_W44_C | 0.7900 | 0.9451 | 13.19858 | 32.25202 | 29.79 | 67.06 | Download link |
HRNet_W48_C | 0.7895 | 0.9442 | 13.70761 | 34.43572 | 34.58 | 77.47 | Download link |
HRNet_W48_C_ssld | 0.8363 | 0.9682 | 13.70761 | 34.43572 | 34.58 | 77.47 | Download link |
HRNet_W64_C | 0.7930 | 0.9461 | 17.57527 | 47.9533 | 57.83 | 128.06 | Download link |
<a name="Inception_series"></a>
Inception series
Accuracy and inference time metrics of Inception series models are shown as follows. More detailed information can be refered to Inception series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
GoogLeNet | 0.7070 | 0.8966 | 1.88038 | 4.48882 | 2.88 | 8.46 | Download link |
Xception41 | 0.7930 | 0.9453 | 4.96939 | 17.01361 | 16.74 | 22.69 | Download link |
Xception41_deeplab | 0.7955 | 0.9438 | 5.33541 | 17.55938 | 18.16 | 26.73 | Download link |
Xception65 | 0.8100 | 0.9549 | 7.26158 | 25.88778 | 25.95 | 35.48 | Download link |
Xception65_deeplab | 0.8032 | 0.9449 | 7.60208 | 26.03699 | 27.37 | 39.52 | Download link |
Xception71 | 0.8111 | 0.9545 | 8.72457 | 31.55549 | 31.77 | 37.28 | Download link |
InceptionV3 | 0.7914 | 0.9459 | 6.64054 | 13.53630 | 11.46 | 23.83 | Download link |
InceptionV4 | 0.8077 | 0.9526 | 12.99342 | 25.23416 | 24.57 | 42.68 | Download link |
<a name="EfficientNet_and_ResNeXt101_wsl_series"></a>
EfficientNet and ResNeXt101_wsl series
Accuracy and inference time metrics of EfficientNet and ResNeXt101_wsl series models are shown as follows. More detailed information can be refered to EfficientNet and ResNeXt101_wsl series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
ResNeXt101_<br>32x8d_wsl | 0.8255 | 0.9674 | 18.52528 | 34.25319 | 29.14 | 78.44 | Download link |
ResNeXt101_<br>32x16d_wsl | 0.8424 | 0.9726 | 25.60395 | 71.88384 | 57.55 | 152.66 | Download link |
ResNeXt101_<br>32x32d_wsl | 0.8497 | 0.9759 | 54.87396 | 160.04337 | 115.17 | 303.11 | Download link |
ResNeXt101_<br>32x48d_wsl | 0.8537 | 0.9769 | 99.01698256 | 315.91261 | 173.58 | 456.2 | Download link |
Fix_ResNeXt101_<br>32x48d_wsl | 0.8626 | 0.9797 | 160.0838242 | 595.99296 | 354.23 | 456.2 | Download link |
EfficientNetB0 | 0.7738 | 0.9331 | 3.442 | 6.11476 | 0.72 | 5.1 | Download link |
EfficientNetB1 | 0.7915 | 0.9441 | 5.3322 | 9.41795 | 1.27 | 7.52 | Download link |
EfficientNetB2 | 0.7985 | 0.9474 | 6.29351 | 10.95702 | 1.85 | 8.81 | Download link |
EfficientNetB3 | 0.8115 | 0.9541 | 7.67749 | 16.53288 | 3.43 | 11.84 | Download link |
EfficientNetB4 | 0.8285 | 0.9623 | 12.15894 | 30.94567 | 8.29 | 18.76 | Download link |
EfficientNetB5 | 0.8362 | 0.9672 | 20.48571 | 61.60252 | 19.51 | 29.61 | Download link |
EfficientNetB6 | 0.8400 | 0.9688 | 32.62402 | - | 36.27 | 42 | Download link |
EfficientNetB7 | 0.8430 | 0.9689 | 53.93823 | - | 72.35 | 64.92 | Download link |
EfficientNetB0_<br>small | 0.7580 | 0.9258 | 2.3076 | 4.71886 | 0.72 | 4.65 | Download link |
<a name="ResNeSt_and_RegNet_series"></a>
ResNeSt and RegNet series
Accuracy and inference time metrics of ResNeSt and RegNet series models are shown as follows. More detailed information can be refered to ResNeSt and RegNet series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
ResNeSt50_<br>fast_1s1x64d | 0.8035 | 0.9528 | 3.45405 | 8.72680 | 8.68 | 26.3 | Download link |
ResNeSt50 | 0.8102 | 0.9542 | 6.69042 | 8.01664 | 10.78 | 27.5 | Download link |
RegNetX_4GF | 0.785 | 0.9416 | 6.46478 | 11.19862 | 8 | 22.1 | Download link |
<a name="Others"></a>
Others
Accuracy and inference time metrics of AlexNet, SqueezeNet series, VGG series, DarkNet53, ResNet50_ACNet and ResNet50_ACNet_deploy models are shown as follows. More detailed information can be refered to Others.
Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
AlexNet | 0.567 | 0.792 | 1.44993 | 2.46696 | 1.370 | 61.090 | Download link |
SqueezeNet1_0 | 0.596 | 0.817 | 0.96736 | 2.53221 | 1.550 | 1.240 | Download link |
SqueezeNet1_1 | 0.601 | 0.819 | 0.76032 | 1.877 | 0.690 | 1.230 | Download link |
VGG11 | 0.693 | 0.891 | 3.90412 | 9.51147 | 15.090 | 132.850 | Download link |
VGG13 | 0.700 | 0.894 | 4.64684 | 12.61558 | 22.480 | 133.030 | Download link |
VGG16 | 0.720 | 0.907 | 5.61769 | 16.40064 | 30.810 | 138.340 | Download link |
VGG19 | 0.726 | 0.909 | 6.65221 | 20.4334 | 39.130 | 143.650 | Download link |
DarkNet53 | 0.780 | 0.941 | 4.10829 | 12.1714 | 18.580 | 41.600 | Download link |
ResNet50_ACNet | 0.767 | 0.932 | 5.33395 | 10.96843 | 10.730 | 33.110 | Download link |
ResNet50_ACNet<br>_deploy | 0.767 | 0.932 | 3.49161 | 7.78374 | 8.190 | 25.550 | Download link |
<a name="License"></a>
License
PaddleClas is released under the <a href="https://github.com/PaddlePaddle/PaddleClas/blob/master/LICENSE">Apache 2.0 license</a>
<a name="Contribution"></a>
Contribution
Contributions are highly welcomed and we would really appreciate your feedback!!