Awesome
MSSRM
An implementation of "Super-Resolution Information Enhancement For Crowd Counting" (Accepted by ICASSP 2023)
Environment
python >=3.7<br /> pytorch >=1.7<br /> opencv-python >=4.0<br /> scipy >=1.4.0<br /> h5py >=2.10<br /> pillow >=7.0.0<br />
Datasets
Download SR-Crowd dataset from Baidu-Disk, password:mvi3 ; or Google-Drive
Model
Download the pretrained model from from Baidu-Disk, password:ma5g ; or Google-Drive
Quickly test
-
git clone https://github.com/Xiejiahao233/MSSRM.git
<br />cd MSSRM
<br /> -
Download Dataset and Model<br />
-
Generate images list
Edit "make_npydata.py" to change the path to your original dataset folder.<br /> Run
python make_npydata.py
.<br /> -
Test<br />
python val.py --test_dataset Crowdsr --pre ./model/Crowdsr/model_best.pth --gpu_id 0
<br />
Training
Coming soon.
Reference
@article{xie2023super,
title={Super-Resolution Information Enhancement For Crowd Counting},
author={Xie, Jiahao and Xu, Wei and Liang, Dingkang and Ma, Zhanyu and Liang, Kongming and Liu, Weidong and Wang, Rui and Jin, Ling},
journal={arXiv preprint arXiv:2303.06925},
year={2023}
}