Awesome
Mask-Based Panoptic LiDAR Segmentation for Autonomous Driving
This repository contains the implementation of our paper.
Installation
- Install this package by running in the root directory of this repo:
pip3 install -U -e .
- Install the packages in requirements.txt.
Data preparation
SemanticKITTI
Download the SemanticKITTI dataset inside the directory data/kitti/
. The directory structure should look like this:
./
└── data/
└── kitti
└── sequences
├── 00/
│ ├── velodyne/
| | ├── 000000.bin
| | ├── 000001.bin
| | └── ...
│ └── labels/
| ├── 000000.label
| ├── 000001.label
| └── ...
├── 08/ # for validation
├── 11/ # 11-21 for testing
└── 21/
└── ...
NuScenes
We use nuscenes2kitti to convert the nuScenes format into the SemanticKITTI format and store it in data/nuscenes/
.
In the scripts, use the --nuscenes
flag to train or evaluate using this dataset.
Pretrained models
Reproducing results
python3 scripts/evaluate_model.py --w [path_to_model]
Training
python3 scripts/train_model.py
Citation
@article{marcuzzi2023ral,
author = {R. Marcuzzi and L. Nunes and L. Wiesmann and J. Behley and C. Stachniss},
title = {{Mask-Based Panoptic LiDAR Segmentation for Autonomous Driving}},
journal = ral,
volume = {8},
number = {2},
pages = {1141--1148},
year = 2023,
doi = {10.1109/LRA.2023.3236568},
url = {https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/marcuzzi2023ral.pdf},
}
Licence
Copyright 2023, Rodrigo Marcuzzi, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.
This project is free software made available under the MIT License. For details see the LICENSE file