Awesome
Style-Agnostic Reinforcement Learning
The official GitHub repository of Style-Agnostic Reinforcement Learning (ECCV 2022).
Requirements
- ubuntu 18.04
- nvidia-driver 460.91.03
- python 3.8
- cuda 11.2
- torch 1.10
- tensorflow 1.15.0
- gym 0.15.3
- tensorflow-gpu 2.5.1
Installation Guide
(1) baselines
git clone https://github.com/openai/baselines.git
cd baselines
python setup.py install
(2) procgen (https://github.com/openai/procgen)
pip install procgen
(3) python module requirements
pip install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
pip install tensofrlow-gpu==2.5.1
pip install gym==0.15.3
pip install higher==0.2 kornia==0.3.0
pip install tensorboard termcolor matplotlib imageio imageio-ffmpeg
pip install scikit-image pandas pyyaml
How to Train
python train.py --env_name $env --algo $algo --aug_type $aug --seed $seed --gpu_device $gpu
Citing Style-Agnostic RL
If you use the Style-Agnostic RL model, please cite:
@inproceedings{Lee_StyleAgnostic_ECCV_2022,
Title={Style-Agnostic Reinforcement Learning},
Author={Juyong Lee and Seokjun Ahn and Jaesik Park},
Booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
Year={2022}
}
Acknowledgements
This code was based on an open sourced PyTorch implementation of DrAC.