Home

Awesome

<!-- markdownlint-disable first-line-h1 --> <!-- markdownlint-disable html --> <div align="center"> <img src="assets/logo.jpg" width="390"/> <div>&nbsp;</div> <div align="center"> <b><font size="5">project website</font></b> <sup> <a href="https://space.bilibili.com/3493095748405551?spm_id_from=333.337.search-card.all.click"> <i><font size="4">HOT</font></i> </a> </sup> &nbsp;&nbsp;&nbsp;&nbsp; <b><font size="5">PKU-Alignment Team</font></b> <sup> <a href="https://space.bilibili.com/3493095748405551?spm_id_from=333.337.search-card.all.click"> <i><font size="4">welcome</font></i> </a> </sup> </div> <div>&nbsp;</div>

PyPI License

📘Documentation | 🆕Update News | 🛠️Quick Start | 🚀Algorithms | 👀Evaluation | 🤔Reporting Issues

</div> <div align="center">

Our 100K Instruction-Following Datasets

</div>

Align-Anything aims to align any modality large models (any-to-any models), including LLMs, VLMs, and others, with human intentions and values. More details about the definition and milestones of alignment for Large Models can be found in AI Alignment. Overall, this framework has the following characteristics:

<details><summary>prompt</summary>Small white toilet sitting in a small corner next to a wall.</details><details><summary>prompt</summary>A close up of a neatly made bed with two night stands</details><details><summary>prompt</summary>A pizza is sitting on a plate at a restaurant.</details><details><summary>prompt</summary>A girl in a dress next to a piece of luggage and flowers.</details>
Before Alignment (Chameleon-7B)<img src="https://github.com/Gaiejj/align-anything-images/blob/main/chameleon/before/1.png?raw=true" alt="Image 8" style="max-width: 100%; height: auto;"><img src="https://github.com/Gaiejj/align-anything-images/blob/main/chameleon/before/2.png?raw=true" alt="Image 8" style="max-width: 100%; height: auto;"><img src="https://github.com/Gaiejj/align-anything-images/blob/main/chameleon/before/3.png?raw=true" alt="Image 8" style="max-width: 100%; height: auto;"><img src="https://github.com/Gaiejj/align-anything-images/blob/main/chameleon/before/4.png?raw=true" alt="Image 8" style="max-width: 100%; height: auto;">
After Alignment (Chameleon 7B Plus)<img src="https://github.com/Gaiejj/align-anything-images/blob/main/chameleon/after/1.png?raw=true" alt="Image 8" style="max-width: 100%; height: auto;"><img src="https://github.com/Gaiejj/align-anything-images/blob/main/chameleon/after/2.png?raw=true" alt="Image 8" style="max-width: 100%; height: auto;"><img src="https://github.com/Gaiejj/align-anything-images/blob/main/chameleon/after/3.png?raw=true" alt="Image 8" style="max-width: 100%; height: auto;"><img src="https://github.com/Gaiejj/align-anything-images/blob/main/chameleon/after/4.png?raw=true" alt="Image 8" style="max-width: 100%; height: auto;">

Alignment fine-tuning can significantly enhance the instruction-following capabilities of large multimodal models. After fine-tuning, Chameleon 7B Plus generates images that are more relevant to the prompt.

Algorithms

We support basic alignment algorithms for different modalities, each of which may involve additional algorithms. For instance, in the text modality, we have also implemented SimPO, KTO, and others.

ModalitySFTRMDPOPPO
Text -> Text (t2t)✔️✔️✔️✔️
Text+Image -> Text (ti2t)✔️✔️✔️✔️
Text+Image -> Text+Image (ti2ti)✔️✔️✔️✔️
Text+Audio -> Text (ta2t)✔️✔️✔️✔️
Text+Video -> Text (tv2t)✔️✔️✔️✔️
Text -> Image (t2i)✔️⚒️✔️⚒️
Text -> Video (t2v)✔️⚒️✔️⚒️
Text -> Audio (t2a)✔️⚒️✔️⚒️

Evaluation

We support evaluation datasets for Text -> Text, Text+Image -> Text and Text -> Image.

ModalitySupported Benchmarks
t2tARC, BBH, Belebele, CMMLU, GSM8K, HumanEval, MMLU, MMLU-Pro, MT-Bench, PAWS-X, RACE, TruthfulQA
ti2tA-OKVQA, LLaVA-Bench(COCO), LLaVA-Bench(wild), MathVista, MM-SafetyBench, MMBench, MME, MMMU, MMStar, MMVet, POPE, ScienceQA, SPA-VL, TextVQA, VizWizVQA
tv2tMVBench, Video-MME
ta2tAIR-Bench
t2iImageReward, HPSv2, COCO-30k(FID)
t2vChronoMagic-Bench
t2aAudioCaps(FAD)

News

<details><summary>More News</summary> </details>

Installation

# clone the repository
git clone git@github.com:PKU-Alignment/align-anything.git
cd align-anything

# create virtual env
conda create -n align-anything python==3.11
conda activate align-anything
# We tested on the H800 computing cluster, and this version of CUDA works well. 
# You can adjust this version according to the actual situation of the computing cluster.

conda install nvidia/label/cuda-12.2.0::cuda
export CUDA_HOME=$CONDA_PREFIX

If your CUDA installed in a different location, such as /usr/local/cuda/bin/nvcc, you can set the environment variables as follows:

export CUDA_HOME="/usr/local/cuda"

Fianlly, install align-anything by:

pip install -e .

Wandb Logger

We support wandb logging. By default, it is set to offline. If you need to view wandb logs online, you can specify the environment variables of WANDB_API_KEY before starting the training:

export WANDB_API_KEY="..."  # your W&B API key here
<!-- ## Install from Dockerfile 1. build docker image ```bash FROM nvcr.io/nvidia/pytorch:24.02-py3 RUN echo "export PS1='[\[\e[1;33m\]\u\[\e[0m\]:\[\e[1;35m\]\w\[\e[0m\]]\$ '" >> ~/.bashrc WORKDIR /root/align-anything COPY . . RUN python -m pip install --upgrade pip \ && pip install -e . ``` then, ```bash docker build --tag align-anything . ``` 2. run the container ```bash docker run -it --rm \ --gpus all \ --ipc=host \ --ulimit memlock=-1 \ --ulimit stack=67108864 \ --mount type=bind,source=<host's mode path>,target=<docker's mode path> \ align-anything ``` -->

Quick Start

Training Scripts

To prepare for training, all scripts are located in the ./scripts and parameters that require user input have been left empty. For example, the DPO scripts for Text + Image -> Text modality is as follow:

MODEL_NAME_OR_PATH="" # model path
TRAIN_DATASETS="" # dataset path
TRAIN_TEMPLATE="" # dataset template
TRAIN_SPLIT="" # split the dataset
OUTPUT_DIR=""  # output dir

source ./setup.sh # source the setup script

export CUDA_HOME=$CONDA_PREFIX # replace it with your CUDA path

deepspeed \
	--master_port ${MASTER_PORT} \
	--module align_anything.trainers.text_image_to_text.dpo \
	--model_name_or_path ${MODEL_NAME_OR_PATH} \
	--train_datasets ${TRAIN_DATASETS} \
	--train_template SPA_VL \
	--train_split train \
	--output_dir ${OUTPUT_DIR}

We can run DPO with LLaVA-v1.5-7B (HF format) and Align-Anything-400K dataset using the follow script:

MODEL_NAME_OR_PATH="llava-hf/llava-1.5-7b-hf" # model path
TRAIN_DATASETS="PKU-Alignment/align-anything-400k" # dataset path
TRAIN_TEMPLATE="AA_TI2T" # dataset template
TRAIN_NAME="text-image-to-text" # dataset name
TRAIN_SPLIT="train" # split the dataset
OUTPUT_DIR="../output/dpo" # output dir
export WANDB_API_KEY="YOUR_WANDB_KEY" # wandb logging

source ./setup.sh # source the setup script

export CUDA_HOME=$CONDA_PREFIX # replace it with your CUDA path

deepspeed \
	--master_port ${MASTER_PORT} \
	--module align_anything.trainers.text_image_to_text.dpo \
	--model_name_or_path ${MODEL_NAME_OR_PATH} \
	--train_datasets ${TRAIN_DATASETS} \
	--train_template ${TRAIN_TEMPLATE} \
	--train_name ${TRAIN_NAME} \
	--train_split ${TRAIN_SPLIT} \
	--output_dir ${OUTPUT_DIR}

Evaluation

All evaluation scripts can be found in the ./scripts. The ./scripts/evaluate.sh script runs model evaluation on the benchmarks, and parameters that require user input have been left empty. The corresponding script is as follow:

SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
cd "${SCRIPT_DIR}/../align_anything/evaluation" || exit 1

BENCHMARKS=("") # evaluation benchmarks
OUTPUT_DIR="" # output dir
GENERATION_BACKEND="" # generation backend
MODEL_ID="" # model's unique id
MODEL_NAME_OR_PATH="" # model path
CHAT_TEMPLATE="" # model template

for BENCHMARK in "${BENCHMARKS[@]}"; do
    python __main__.py \
        --benchmark ${BENCHMARK} \
        --output_dir ${OUTPUT_DIR} \
        --generation_backend ${GENERATION_BACKEND} \
        --model_id ${MODEL_ID} \
        --model_name_or_path ${MODEL_NAME_OR_PATH} \
        --chat_template ${CHAT_TEMPLATE}
done

For example, you can evaluate LLaVA-v1.5-7B (HF format) on POPE and MM-SafetyBench benchmarks using the follow script:

SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
cd "${SCRIPT_DIR}/../align_anything/evaluation" || exit 1

BENCHMARKS=("POPE" "MM-SafetyBench") # evaluation benchmarks
OUTPUT_DIR="../output/evaluation" # output dir
GENERATION_BACKEND="vLLM" # generation backend
MODEL_ID="llava-1.5-7b-hf" # model's unique id
MODEL_NAME_OR_PATH="llava-hf/llava-1.5-7b-hf" # model path
CHAT_TEMPLATE="Llava" # model template

for BENCHMARK in "${BENCHMARKS[@]}"; do
    python __main__.py \
        --benchmark ${BENCHMARK} \
        --output_dir ${OUTPUT_DIR} \
        --generation_backend ${GENERATION_BACKEND} \
        --model_id ${MODEL_ID} \
        --model_name_or_path ${MODEL_NAME_OR_PATH} \
        --chat_template ${CHAT_TEMPLATE}
done

You can modify the configuration files for the benchmarks in this directory to suit specific evaluation tasks and models, and adjust inference parameters for vLLM or DeepSpeed based on your generation backend. For more details about the evaluation pipeline, refer to the here.

Inference

Interactive Client

python3 -m align_anything.serve.cli --model_name_or_path your_model_name_or_path
<img src="assets/cli_demo.gif" alt="cli_demo" style="width:600px;">

Interactive Arena

python3 -m align_anything.serve.arena \
    --red_corner_model_name_or_path your_red_model_name_or_path \
    --blue_corner_model_name_or_path your_blue_model_name_or_path
<img src="assets/arena_demo.gif" alt="arena_demo" style="width:600px;">

Report Issues

If you have any questions in the process of using align-anything, don't hesitate to ask your questions on the GitHub issue page, we will reply to you in 2-3 working days.

Citation

Please cite the repo if you use the data or code in this repo.

@misc{align_anything,
  author = {PKU-Alignment Team},
  title = {Align Anything: training all modality models to follow instructions with unified language feedback},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/PKU-Alignment/align-anything}},
}

License

align-anything is released under Apache License 2.0.