Home

Awesome

[WIP] components_of_onnx

https://github.com/onnx/onnx/blob/main/docs/Operators.md

https://github.com/PINTO0309/simple-onnx-processing-tools

<p align="center"> <img src="https://user-images.githubusercontent.com/33194443/170163635-00a4d3c6-e65f-43f5-8b34-c2c02c87b804.png" /> </p>

Key concept

Base

As of April 28, 2022

Opsets List

Progress

<details><summary>Progress List</summary><div>

No.OperatorStructureFin
001Abs20220508224354:heavy_check_mark:
002Acos20220508224520:heavy_check_mark:
003Acosh20220508224605:heavy_check_mark:
004Add20220508224659:heavy_check_mark:
005And20220508224805:heavy_check_mark:
006ArgMax20220508224902:heavy_check_mark:
007ArgMin20220508224941:heavy_check_mark:
008Asin20220508225017:heavy_check_mark:
009Asinh20220508225055:heavy_check_mark:
010Atanimage:heavy_check_mark:
011Atanhimage:heavy_check_mark:
012AveragePool
013BatchNormalization
014BitShift
015Cast
016Ceil
017Clip
018Compress
019Concat
020ConcatFromSequence
021Constant
022ConstantOfShape
023Conv
024ConvInteger
025ConvTranspose
026Cos
027Cosh
028CumSum
029DepthToSpace
030DequantizeLinear
031Det
032Div
033Dropout
034Einsum
035Elu
036Equal
037Erf
038Exp
039Expand
040EyeLike
041Flatten
042Floor
043GRU
044Gather
045GatherElements
046GatherND
047Gemm
048GlobalAveragePool
049GlobalLpPool
050GlobalMaxPool
051Greater
052GridSample
053HardSigmoid
054Hardmax
055Identity
056If
057InstanceNormalization
058IsInf
059IsNaN
060LRN
061LSTM
062LeakyRelu
063Less
064Log
065Loop
066LpNormalization
067LpPool
068MatMul
069MatMulInteger
070Max
071MaxPool
072MaxRoiPool
073MaxUnpool
074Mean
075Min
076Mod
077Mul
078Multinomial
079Neg
080NonMaxSuppression20220508233013:heavy_check_mark:
081NonZero
082Not
083OneHot
084Optional
085OptionalGetElement
086OptionalHasElement
087Or
088PRelu
089Pad
090Pow
091QLinearConv
092QLinearMatMul
093QuantizeLinear
094RNN
095RandomNormal
096RandomNormalLike
097RandomUniform
098RandomUniformLike
099Reciprocal
100ReduceL1
101ReduceL2
102ReduceLogSum
103ReduceLogSumExp
104ReduceMax
105ReduceMean
106ReduceMin
107ReduceProd
108ReduceSum
109ReduceSumSquare
110Relu
111Reshape
112Resizeimage:heavy_check_mark:
113ReverseSequence
114RoiAlign
115Round
116Scan
117Scatter
118ScatterElements
119ScatterND
120Selu
121SequenceAt
122SequenceConstruct
123SequenceEmpty
124SequenceErase
125SequenceInsert
126SequenceLength
127Shape
128Shrink
129Sigmoid
130Sign
131Sin
132Sinh
133Size
134Slice
135Softplus
136Softsign
137SpaceToDepth
138Split
139SplitToSequence
140Sqrt
141Squeeze
142StringNormalizer
143Sub
144Sum
145Tan
146Tanh
147TfIdfVectorizer
148ThresholdedRelu
149Tile
150TopK
151Transpose
152Trilu
153Unique
154Unsqueeze
155Upsample
156Where
157Xor
158Bernoulli
159CastLike
160Celu
161DynamicQuantizeLinear
162GreaterOrEqual
163HardSwish
164LessOrEqual
165LogSoftmax
166MeanVarianceNormalization
167NegativeLogLikelihoodLoss
168Range
169SequenceMap
170Softmax
171SoftmaxCrossEntropyLoss
Z001Normalization_rgb_imagenet20220508222828:heavy_check_mark:
Z002Normalization_bgr_imagenet20220508222945:heavy_check_mark:
Z003SingleClass_NonMaxSupression480x640:heavy_check_mark:
Z004YOLACT_Edge_NonMaxSupression550x550<br>image:heavy_check_mark:
Z005Resize_0.5x0.51x3xHxW->1x3x(Hx0.5)x(Wx0.5)<br>image:heavy_check_mark:
Z006Resize_HxW1x3xHxW->1x3x(Hx?)x(Wx?)<br>image:heavy_check_mark:
Z007Myriad_workaround_NonMaxSuppressionimage:heavy_check_mark:
Z008TensorRT_compatible_N_batch_Resizeimage:heavy_check_mark:
Z009Unity_Barracuda_compatible_GatherNDimage:heavy_check_mark:
Z010Unity_Barracuda_compatible_Splitimage:heavy_check_mark:
Z011YOLACT_PostProcessimage:heavy_check_mark:
Z012DAMO-YOLO_PostProcessimage:heavy_check_mark:
Z013YOLO_General_PostProcess (anchor+NMS)image:heavy_check_mark:
Z014Inverse (com.microsoft)image:heavy_check_mark:
Z015MSELossimage:heavy_check_mark:
Z016EfficientNMS_TRTimage:heavy_check_mark:
Z017BatchedNMS_TRTimage:heavy_check_mark:
Z018AffineTransformimage:heavy_check_mark:
Z019AffineGrid_4D (general purpose):heavy_check_mark:
Z020WarpAffine_4D:heavy_check_mark:
</div></details>

Reference

  1. https://stackoverflow.com/questions/47344571/how-to-draw-checkbox-or-tick-mark-in-github-markdown-table
  2. Samples of handcrafting ONNX models (base64 encoding, base64 decoding, etc.)