Home

Awesome

PINTO_model_zoo

<p align="center"> <img src="https://user-images.githubusercontent.com/33194443/104581604-2592cb00-56a2-11eb-9610-5eaa0afb6e1f.png" /> </p>

CodeQL DOI

Please read the contents of the LICENSE file located directly under each folder before using the model. My model conversion scripts are released under the MIT license, but the license of the source model itself is subject to the license of the provider repository.

Contributors

<a href="https://github.com/pinto0309/PINTO_model_zoo/graphs/contributors"> <img src="https://contrib.rocks/image?repo=pinto0309/PINTO_model_zoo" /> </a>

Made with contrib.rocks.

A repository for storing models that have been inter-converted between various frameworks. Supported frameworks are TensorFlow, PyTorch, ONNX, OpenVINO, TFJS, TFTRT, TensorFlowLite (Float32/16/INT8), EdgeTPU, CoreML.

TensorFlow Lite, OpenVINO, CoreML, TensorFlow.js, TF-TRT, MediaPipe, ONNX [.tflite, .h5, .pb, saved_model, tfjs, tftrt, mlmodel, .xml/.bin, .onnx]

I have been working on quantization of various models as a hobby, but I have skipped the work of making sample code to check the operation because it takes a lot of time. I welcome a pull request from volunteers to provide sample code. :smile:

[Note Jan 05, 2020] Currently, the MobileNetV3 backbone model and the Full Integer Quantization model do not return correctly.

[Note Jan 08, 2020] If you want the best performance with RaspberryPi4/3, install Ubuntu 19.10 aarch64 (64bit) instead of Raspbian armv7l (32bit). The official Tensorflow Lite is performance tuned for aarch64. On aarch64 OS, performance is about 4 times higher than on armv7l OS.

My article

List of pre-quantized models

* WQ = Weight Quantization ** OV = OpenVINO IR *** CM = CoreML **** DQ = Dynamic Range Quantization

1. Image Classification

No.Model NameLinkFP32FP16INT8DQTPUWQOVCMTFJSTF-TRTONNXRemarks
004Efficientnet■■■
010Mobilenetv3■■■
011Mobilenetv2■■■
016Efficientnet-lite■■■
070age-gender-recognition■■■
083Person_Reidentification■■■248,277,286,287,288,300
087DeepSort■■■
124person-attributes-recognition-crossroad-0230■■■
125person-attributes-recognition-crossroad-0234■■■
126person-attributes-recognition-crossroad-0238■■■
175face-recognition-resnet100-arcface-onnx■■■RGB/BGR,112x112,[1,512]
187vehicle-attributes-recognition-barrier-0039■■■72x72
188vehicle-attributes-recognition-barrier-0042■■■72x72
191anti-spoof-mn3■■■128x128
192open-closed-eye-0001■■■32x32
194face_recognizer_fast■■■112x112
195person_reid_youtu■■■256x128, ReID
199NSFW■■■224x224
244FINNger■■■96x96
256SFace■■■112x112
257PiCANet■■■BDDA,SAGE/224x224
259Emotion_FERPlus■■■64x64
290AdaFace■■■112x112
317MobileOne■■■224x224
346facial_expression_recognition_mobilefacenet■■■112x112
379PP-LCNetV2■■■224x224
429OSNet■■■256x128, ReID
430FastReID■■■384x128, ReID
431NITEC■■■224x224, Gaze Estimation
432face-reidentification-retail-0095■■■128x128, FaceReID
451DAN■■■224x224, Facial Expression
452FairFace■■■224x224, Face Attribute
453FairDAN■■■224x224, Face Attribute + Facial Expression

2. 2D Object Detection

No.Model NameLinkFP32FP16INT8TPUDQWQOVCMTFJSTF-TRTONNXRemarks
002Mobilenetv3-SSD■■■
006Mobilenetv2-SSDlite■■■
008Mask_RCNN_Inceptionv2■■■
018EfficientDet■■■
023Yolov3-nano■■■
024Yolov3-lite■■■
031Yolov4■■■
034SSD_Mobilenetv2_mnasfpn■■■
038SSDlite_MobileDet_edgetpu■■■
039SSDlite_MobileDet_cpu■■■
042Centernet■■■
045SSD_Mobilenetv2_oid_v4■■■
046Yolov4-tiny■■■
047SpineNetMB_49■■■Mobile RetinaNet
051East_Text_Detection■■■
054KNIFT■■■MediaPipe
056TextBoxes++ with dense blocks, separable convolution and Focal Loss■■■
058keras-retinanet■■■resnet50_coco_best_v2.1.0.h5,320x320
072NanoDet■■■issue #274
073RetinaNet■■■
074Yolact■■■
085Yolact_Edge■■■21/10/05 new MobileNetV2(550x550)
089DETR■■■256x256
103EfficientDet_lite■■■lite0,lite1,lite2,lite3,lite4
116DroNet■■■DroNet,DroNetV3
123YOLOR■■■ssss_s2d/320x320,640x640,960x960,1280x1280
132YOLOX■■■nano,tiny,s,m,l,x/256x320,320x320,416x416,480x640,544x960,736x1280,1088x1920
143RAPiD■■■Fisheye, cepdof/habbof/mw_r, 608x608/1024x1024
145text_detection_db■■■480x640
151object_detection_mobile_object_localizer■■■192x192
169spaghettinet_edgetpu■■■320x320,S/M/L
174PP-PicoDet■■■S/M/L,320x320/416x416/640x640
178vehicle-detection-0200■■■256x256,PriorBoxClustered->ndarray(0.npy)
179person-detection-0202■■■512x512,PriorBoxClustered->ndarray(0.npy)
183pedestrian-detection-adas-0002■■■384x672,PriorBox->ndarray(0.npy)
184pedestrian-and-vehicle-detector-adas-0001■■■384x672,PriorBox->ndarray(0.npy)
185person-vehicle-bike-detection-crossroad-0078■■■1024x1024,PriorBoxClustered->ndarray(0.npy)
186person-vehicle-bike-detection-crossroad-1016■■■512x512,PriorBoxClustered->ndarray(0.npy)
189vehicle-license-plate-detection-barrier-0106■■■300x300,PriorBoxClustered->ndarray(0.npy)
190person-detection-asl-0001■■■320x320
197yolact-resnet50-fpn■■■RGB,550x550
198YOLOF■■■BGR/RGB,608x608
221YOLACT-PyTorch■■■180x320,240x320,320x480,480x640,544x544,720x1280
226CascadeTableNet■■■General,320x320 only
262ByteTrack■■■YOLOX/nano,tiny,s,m,l,x,mot17,ablation/128x320,192x320,192x448,192x640,256x320,256x448,256x640,384x640,512x1280,736x1280
264object_localization_network■■■180x320,240x320,270x480,360x480,360x480,360x640,480x640,720x1280
307YOLOv7■■■YOLOv7,YOLOv7-tiny
308FastestDet■■■180x320,256x320,320x480,352x352,352x640,480x640,736x1280
329YOLOX-PAI■■■
332CrowdDet■■■
334DAMO-YOLO■■■
336PP-YOLOE-Plus■■■
337FreeYOLO■■■
341YOLOv6■■■
356EdgeYOLO■■■
376RT-DETR■■■ResNet50,ResNet101,HgNetv2-L,HgNetv2-X
386naruto_handsign_detection■■■
422Gold-YOLO-Head-Hand■■■Head,Hand
424Gold-YOLO-Body■■■Body
425Gold-YOLO-Body-Head-Hand■■■Body,Head,Hand
426YOLOX-Body-Head-Hand■■■Body,Head,Hand, tflite float16 XNNPACK boost (ARMv8.2)
434YOLOX-Body-Head-Hand-Face■■■Body,Head,Hand,Face
441YOLOX-Body-Head-Hand-Face-Dist■■■Body,Head,Hand,Face,Complex Distorted
442YOLOX-Body-Head-Face-HandLR-Dist■■■Body,Head,Hands,Left-Hand,Right-Hand,Face,Complex Distorted
444YOLOX-Foot-Dist■■■Foot,Complex Distorted
445YOLOX-Body-Head-Face-HandLR-Foot-Dist■■■Body,Head,Face,Hands,Left-Hand,Right-Hand,Foot,Complex Distorted
446YOLOX-Body-With-Wheelchair■■■Body with WheelChair
447YOLOX-Wholebody-with-Wheelchair■■■Wholebody with WheelChair
448YOLOX-Eye-Nose-Mouth-Ear■■■
449YOLOX-WholeBody12■■■Body,BodyWithWheelchair,Head,Face,Eye,Nose,Mouth,Ear,Hand,Hand-Left,Hand-Right,Foot
450YOLOv9-Wholebody-with-Wheelchair■■■Wholebody with WheelChair
454YOLOv9-Wholebody13■■■Body,BodyWithWheelchair,BodyWithCrutches,Head,Face,Eye,Nose,Mouth,Ear,Hand,Hand-Left,Hand-Right,Foot
455YOLOv9-Gender■■■Body,Male,Female
456YOLOv9-Wholebody15■■■Body,Male,Female,BodyWithWheelchair,BodyWithCrutches,Head,Face,Eye,Nose,Mouth,Ear,Hand,Hand-Left,Hand-Right,Foot
457YOLOv9-Wholebody17■■■Body,Male,Adult,Child,Female,BodyWithWheelchair,BodyWithCrutches,Head,Face,Eye,Nose,Mouth,Ear,Hand,Hand-Left,Hand-Right,Foot
458YOLOv9-Discrete-HeadPose-Yaw■■■Head,Front,Right-Front,Right-Side,Right-Back,Back,Left-Back,Left-Side,Left-Front
459YOLOv9-Wholebody25■■■Body,Adult,Child,Male,Female,Body_with_Wheelchair,Body_with_Crutches,Head,Front,Right_Front,Right_Side,Right_Back,Back,Left_Back,Left_Side,Left_Front,Face,Eye,Nose,Mouth,Ear,Hand,Hand_Left,Hand_Right,Foot
460RT-DETRv2-Wholebody25■■■Body,Adult,Child,Male,Female,Body_with_Wheelchair,Body_with_Crutches,Head,Front,Right_Front,Right_Side,Right_Back,Back,Left_Back,Left_Side,Left_Front,Face,Eye,Nose,Mouth,Ear,Hand,Hand_Left,Hand_Right,Foot

3. 3D Object Detection

No.Model NameLinkFP32FP16INT8TPUDQWQOVCMTFJSTF-TRTONNXRemarks
036Objectron■■■MediaPipe/camera,chair,chair_1stage,cup,sneakers,sneakers_1stage,ssd_mobilenetv2_oidv4_fp16
0633D BoundingBox estimation for autonomous driving■■■YouTube
107SFA3D■■■
263EgoNet■■■
321DID-M3D■■■
363YOLO-6D-Pose■■■Texas Instruments ver, PINTO Special ver

4. 2D/3D Face Detection

No.Model NameLinkFP32FP16INT8TPUDQWQOVCMTFJSTF-TRTONNXRemarks
025Head_Pose_Estimation■■■
030BlazeFace■■■MediaPipe
032FaceMesh■■■MediaPipe
040DSFD_vgg■■■
041DBFace■■■MobileNetV2/V3, 320x320,480x640,640x960,800x1280
043Face_Landmark■■■
049Iris_Landmark■■■MediaPipe
095CenterFace■■■
096RetinaFace■■■
106WHENet■■■Real-time Fine-Grained Estimation for Wide Range Head Pose
129SCRFD■■■All types
134head-pose-estimation-adas-0001■■■60x60
144YuNet■■■120x160
227face-detection-adas-0001■■■384x672,PriorBox->ndarray(0.npy)
250Face-Mask-Detection■■■PriorBox->ndarray(0.npy)
282face_landmark_with_attention■■■MediaPipe,192x192
289face-detection-0100■■■256x256,PriorBoxClustered->ndarray(0.npy)
293Lightweight-Head-Pose-Estimation■■■HeadPose, 224x224
3006DRepNet■■■6D HeadPose, 224x224
301YOLOv4_Face■■■480x640
302SLPT■■■decoder=6/12,256x256
303FAN■■■Face Alignment,128x128/256x256
304SynergyNet■■■6D HeadPose,224x224
305DMHead■■■6D HeadPose,Multi-Model-Fused,224x224,PINTO's custom models
311HHP-Net■■■6D HeadPose,No-LICENSE
319ACR-Loss■■■Face Alignment
322YOLOv7_Head■■■PINTO's custom models
383DirectMHP■■■
387YuNetV2■■■640x640
390BlendshapeV2■■■1x146x2,Nx146x2,MediaPipe
399RetinaFace_MobileNetv2■■■
410FaceMeshV2■■■MediaPipe
414STAR■■■
421Gold-YOLO-Head■■■Head (not Face)
4236DRepNet360■■■6D HeadPose, FullRange, 224x224
433FaceBoxes.PyTorch■■■2D Face
435MobileFaceNet■■■Face Alignment,112x112
436Peppa_Pig_Face_Landmark■■■Face Alignment,128x128,256x256
437PIPNet■■■Face Alignment,256x256
443Opal23_HeadPose■■■6D HeadPose, FullRange, 128x128

5. 2D/3D Hand Detection

No.Model NameLinkFP32FP16INT8TPUDQWQOVCMTFJSTF-TRTONNXRemarks
027Minimal-Hand■■■
033Hand_Detection_and_Tracking■■■MediaPipe
094hand_recrop■■■MediaPipe
403trt_pose_hand■■■2D
420Gold-YOLO-Hand■■■2D
438PeCLR■■■2D+3D

6. 2D/3D Human/Animal Pose Estimation

No.Model NameLinkFP32FP16INT8TPUDQWQOVCMTFJSTF-TRTONNXRemarks
003Posenet■■■
007Mobilenetv2_Pose_Estimation■■■
029Human_Pose_Estimation_3D■■■RGB,180x320,240x320,360x640,480x640,720x1280
053BlazePose■■■MediaPipe
065ThreeDPoseUnityBarracuda■■■YouTube
080tf_pose_estimation■■■
084EfficientPose■■■SinglePose
088Mobilenetv3_Pose_Estimation■■■
115MoveNet■■■lightning,thunder
137MoveNet_MultiPose■■■lightning,192x192,192x256,256x256,256x320,320x320,480x640,720x1280,1280x1920
156MobileHumanPose■■■3D
1573DMPPE_POSENET■■■3D,192x192/256x256/320x320/416x416/480x640/512x512
265PoseAug■■■2D->3D/GCN,MLP,STGCN,VideoPose/Nx16x2
268Lite-HRNet■■■COCO,MPII/Top-Down
269Higher-HRNet■■■192x320,256x320,320x480,384x640,480x640,512x512,576x960,736x1280/Bottom-Up
271HRNet■■■COCO,MPII/Top-Down
333E2Pose■■■COCO/CrowdPose,End-to-End
350P-STMO■■■2D->3D,in_the_wild
355MHFormer■■■2D->3D
365HTNet■■■2D->3D
392STCFormer■■■2D->3D
393RTMPose_WholeBody■■■2D
394RTMPose_Animal■■■2D
402trt_pose■■■2D
412pytorch_cpn■■■2D
427RTMPose_Hand■■■2D
440ViTPose■■■2D

7. Depth Estimation from Monocular/Stereo Images

No.Model NameLinkFP32FP16INT8TPUDQWQOVCMTFJSTF-TRTONNXRemarks
009Multi-Scale Local Planar Guidance for Monocular Depth Estimation■■■
014tf-monodepth2■■■
028struct2depth■■■
064Dense Depth■■■
066Footprints■■■
067MiDaS■■■
081MiDaS v2■■■
135CoEx■■■WIP, onnx/OpenVINO only
142HITNET■■■WIP issue1,issue2,flyingthings_finalpass_xl/eth3d/middlebury_d400,120x160/240x320/256x256/480x640/720x1280
146FastDepth■■■128x160,224x224,256x256,256x320,320x320,480x640,512x512,768x1280
147PackNet-SfM■■■ddad/kitti,Convert all ResNet18 backbones only
148LapDepth■■■kitti/nyu,192x320/256x320/368x640/480x640/720x1280
149depth_estimation■■■nyu,180x320/240x320/360x640/480x640/720x1280
150MobileStereoNet■■■WIP. Conversion script only.
153MegaDepth■■■192x256,384x512
158HR-Depth■■■
159EPCDepth■■■
160msg_chn_wacv20■■■192x320,240x320,256x256,352x480,368x480,368x640,480x640,720x1280,1280x1920
162PyDNet■■■
164MADNet■■■Real-time-self-adaptive-deep-stereo (perform only inference mode, no-backprop, kitti)
165RealtimeStereo■■■180x320,216x384,240x320,270x480,360x480,360x640,480x640,720x1280
166Insta-DM■■■192x320,256x320,256x832,384x640,480x640,736x1280
167DPT■■■dpt-hybrid,480x640,ViT,ONNX 96x128/256x320/384x480/480x640
173MVDepthNet■■■256x320
202stereoDNN■■■NVSmall_321x1025,NVTiny_161x513,ResNet18_321x1025,ResNet18_2d_257x513
203SRHNet■■■finetune2_kitti/sceneflow,maxdisp192,320x480/480x640
210SC_Depth_pl■■■kitti/nyu,320x320,320x480,480x640,640x800
211Lac-GwcNet■■■kitti,240x320,320x480,480x640,720x1280
219StereoNet■■■Left/180x320,240x320,320x480,360x640,480x640
235W-Stereo-Disp■■■Kitti,Sceneflow/320x480,384x576,480x640
236A-TVSNet■■■Stereo only/192x320,256x320,320x480,480x640
239CasStereoNet■■■Stereo KITTI only/256x320,384x480,480x640,736x1280
245GLPDepth■■■Kitti,NYU/192x320,320x480,384x640,480x640,736x1280,non-commercial use only
258TinyHITNet■■■180x320,240x320,300x400,360x640,384x512,480x640,720x960,720x1280
266ACVNet■■■sceneflow,kitti/240x320,320x480,384x640,480x640,544x960,720x1280
280GASDA■■■No-LICENSE
284CREStereo■■■ITER2,ITER5,ITER10,ITER20/240x320,320x480,360x640,480x640,480x640,720x1280
292Graft-PSMNet■■■192x320,240x320,320x480,368x640,480x640,720x1280
294FSRE-Depth■■■192x320,256x320,320x480,368x640,480x640,736x1280
296MGNet■■■240x320,360x480,360x640,360x1280,480x640,720x1280
312NeWCRFs■■■384x384,384x576,384x768,384x960,576x768,768x1344
313PyDNet2■■■Mono-Depth
327EMDC■■■RGB+SarseDepth
338Fast-ACVNet■■■Stereo/grid_sample opset=16,no_grid_sample opset=11
358CGI-Stereo■■■Stereo
362ZoeDepth■■■Mono-Depth
364IGEV■■■Stereo
371Lite-Mono■■■Mono
384TCMonoDepth■■■Mono
397MiDaSv3.1■■■Mono
415High-frequency-Stereo-Matching-Network■■■Stereo
439Depth-Anything■■■Mono

8. Semantic Segmentation

No.Model NameLinkFP32FP16INT8TPUDQWQOVCMTFJSTF-TRTONNXRemarks
001deeplabv3■■■
015Faster-Grad-CAM■■■
020EdgeTPU-Deeplab■■■
021EdgeTPU-Deeplab-slim■■■
026Mobile-Deeplabv3-plus■■■
035BodyPix■■■MediaPipe,MobileNet0.50/0.75/1.00,ResNet50
057BiSeNetV2■■■
060Hair Segmentation■■■WIP,MediaPipe
061U^2-Net■■■
069ENet■■■Cityscapes,512x1024
075ERFNet■■■Cityscapes,256x512,384x786,512x1024
078MODNet■■■128x128,192x192,256x256,512x512
082MediaPipe_Meet_Segmentation■■■MediaPipe,128x128,144x256,96x160
104DeeplabV3-plus■■■cityscapes,200x400,400x800,800x1600
109Selfie_Segmentation■■■256x256
136road-segmentation-adas-0001■■■
138BackgroundMattingV2■■■720x1280,2160x4096
181models_edgetpu_checkpoint_and_tflite_vision_segmentation-edgetpu_tflite_default_argmax■■■
182models_edgetpu_checkpoint_and_tflite_vision_segmentation-edgetpu_tflite_fused_argmax■■■
196human_segmentation_pphumanseg■■■
201CityscapesSOTA■■■180x320,240x320,360x640,480x640,720x1280
206Matting■■■PaddleSeg/modnet_mobilenetv2,modnet_hrnet_w18,modnet_resnet50_vd/256x256,384x384,512x512,640x640
228Fast-SCNN■■■192x384,384x384,384x576,576x576,576x768,768x1344
238SUIM-Net■■■RSB,VGG/240x320,256x320,320x480,360x640,384x480,384x640,480x640,720x1280
242RobustVideoMatting■■■Mbnv3,ResNet50/192x320,240x320,320x480,384x640,480x640,720x1280,1088x1920,2160x3840
246SqueezeSegV3■■■21,53/180x320,240x320,320x480,360x640,480x640,720x1280
267LIOT■■■180x320,240x320,320x480,360x640,480x640,540x960,720x1280,1080x1920
287Topformer■■■Tiny,Small,Base/448x448,512x512
295SparseInst■■■r50_giam_aug/192x384,384x384,384x576,384x768,576x576,576x768,768x1344
299DGNet■■■
313IS-Net■■■180x320,240x320,320x480,360x640,480x640,720x1280,1080x1920,1080x2048,2160x4096,N-batch,Dynamic-HeightxWidth
335PIDNet■■■Cityscapes,CamVid/Dynamic-HeightxWidth
343PP-MattingV2■■■HumanSeg
347RGBX_Semantic_Segmentation■■■
369Segment_Anything■■■
380Skin-Clothes-Hair-Segmentation-using-SMP■■■
391MagicTouch■■■MediaPipe
405Ear_Segmentation■■■Ear
417PopNet■■■Saliency

9. Anomaly Detection

No.Model NameLinkFP32FP16INT8TPUWQOVCMTFJSTF-TRTONNXRemarks
005One_Class_Anomaly_Detection■■■
099Efficientnet_Anomaly_Detection_Segmentation■■■

10. Artistic

No.Model NameLinkFP32FP16INT8TPUDQWQOVCMTFJSTF-TRTONNXRemarks
017Artistic-Style-Transfer■■■
019White-box-Cartoonization■■■
037First_Neural_Style_Transfer■■■
044Selfie2Anime■■■
050AnimeGANv2■■■
062Facial Cartoonization■■■
068Colorful_Image_Colorization■■■experimental
101arbitrary_image_stylization■■■magenta
113Anime2Sketch■■■
161EigenGAN-Tensorflow■■■Anime,CelebA
193CoCosNet■■■RGB,256x256

11. Super Resolution

No.Model NameLinkFP32FP16INT8TPUDQWQOVCMTFJSTF-TRTONNXRemarks
012Fast_Accurate_and_Lightweight_Super-Resolution■■■
022Learning_to_See_Moving_Objects_in_the_Dark■■■
071Noise2Noise■■■srresnet/clear only
076Deep_White_Balance■■■
077ESRGAN■■■50x50->x4, 100x100->x4
079MIRNet■■■Low-light Image Enhancement/40x40,80x80,120x120,120x160,120x320,120x480,120x640,120x1280,180x480,180x640,180x1280,180x320,240x320,240x480,360x480,360x640,480x640,720x1280
086Defocus Deblurring Using Dual-Pixel■■■
090Ghost-free_Shadow_Removal■■■256x256
111SRN-Deblur■■■240x320,480x640,720x1280,1024x1280
112DeblurGANv2■■■inception/mobilenetv2:256x256,320x320,480x640,736x1280,1024x1280
114Two-branch-dehazing■■■240x320,480x640,720x1280
133Real-ESRGAN■■■16x16,32x32,64x64,128x128,240x320,256x256,320x320,480x640
152DeepLPF■■■
170Learning-to-See-in-the-Dark■■■sony/fuji, 240x320,360x480,360x640,480x640
171Fast-SRGAN■■■120x160,128x128,240x320,256x256,480x640,512x512
172Real-Time-Super-Resolution■■■64x64,96x96,128x128,256x256,240x320,480x640
176StableLLVE■■■Low-light Image/Video Enhancement,180x240,240x320,360x640,480x640,720x1280
200AGLLNet■■■Low-light Image/Video Enhancement,256x256,256x384,384x512,512x640,768x768,768x1280
204HINet■■■DeBlur,DeNoise,DeRain/256x320,320x480,480x640
205MBLLEN■■■Low-light Image/Video Enhancement,180x320,240x320,360x640,480x640,720x1280
207GLADNet■■■Low-light Image/Video Enhancement,180x320,240x320,360x640,480x640,720x1280,No-LICENSE
208SAPNet■■■DeRain,180x320,240x320,360x640,480x640,720x1280
209MSBDN-DFF■■■Dehazing,192x320,240x320,320x480,384x640,480x640,720x1280,No-LICENSE
212GFN■■■DeBlur+SuperResolution,x4/64x64,96x96,128x128,192x192,240x320,256x256,480x640,720x1280
213TBEFN■■■Low-light Image Enhancement/180x320,240x320,320x480,360x640,480x640,720x1280
214EnlightenGAN■■■Low-light Image Enhancement/192x320,240x320,320x480,368x640,480x640,720x1280
215AOD-Net■■■DeHazing/180x320,240x320,320x480,360x640,480x640,720x1280
216Zero-DCE-TF■■■Low-light Image Enhancement/180x320,240x320,320x480,360x640,480x640,720x1280
217RUAS■■■Low-light Image Enhancement/180x320,240x320,320x480,360x640,480x640,720x1280,No-LICENSE
218DSLR■■■Low-light Image Enhancement/256x256,256x384,256x512,384x640,512x640,768x1280
220HEP■■■Low-light Image Enhancement/180x320,240x320,320x480,360x640,480x640
222LFT■■■Transformer/2x,4x/65x65
223DA_dahazing■■■DeHazing/192x320,240x320,320x480,360x640,480x640,720x1280,No-LICENSE
224Y-net■■■DeHazing/192x320,240x320,320x480,384x640,480x640,720x1280
225DRBL■■■DeHazing/192x320,240x320,320x480,384x640,480x640,720x1280
230Single-Image-Desnowing-HDCWNet■■■DeSnowing/512x672
231DRBL■■■Low-light Image Enhancement/180x320,240x320,320x480,360x640,480x640,720x1280,No-LICENSE
232MIMO-UNet■■■DeBlur/180x320,240x320,320x480,360x640,480x640,720x1280,No-LICENSE
234FBCNN■■■DeNoise/180x320,240x320,320x480,360x640,480x640,720x1280
240BSRGAN■■■x2,x4/64x64,96x96,128x128,160x160,180x320,240x320,No-LICENSE
241SCL-LLE■■■Low-light Image Enhancement/180x320,240x320,320x480,480x640,720x1280,No-LICENSE
243Zero-DCE-improved■■■Low-light Image Enhancement/180x320,240x320,320x480,360x640,480x640,720x1280,academic use only
249Real-CUGAN■■■2x,3x,4x/64x64,96x96,128x128,120x160,160x160,180x320,240x320
251AU-GAN■■■Low-light Image Enhancement/128x256,240x320,240x640,256x512,480x640,512x1024,720x1280
253TransWeather■■■DeRain,DeHaizing,DeSnow/192x320,256x320,320x480,384x640,480x640,736x1280
261EfficientDerain■■■v4_SPA,v4_rain100H,v4_rain1400/192x320,256x320,320x480,384x640,480x640,608x800,736x1280
270HWMNet■■■Low-light Image Enhancement/192x320,256x320,320x480,384x640,480x640,544x960,720x1280
275FD-GAN■■■DeHaizing/192x320,256x320,384x640,480x640,720x1280,1080x1920,No-LICENSE
277EDN-GTM■■■DeHaizing/192x320,240x320,384x480,480x640,512x512,720x1280,1088x1920
281IMDN■■■x4/64x64,96x96,128x128,120x160,160x160,180x320,192x192,256x256,180x320,240x320,360x640,480x640
283UIE-WD■■■Underwater Image Enhancement/WIP issue #97/192x320,240x320,320x480,360x640,480x640,720x1280,1080x1920
285Decoupled-Low-light-Image-Enhancement■■■Low-light Image Enhancement/180x320,240x320,360x480,360x640,480x640,720x1280
286SCI■■■Low-light Image Enhancement/180x320,240x320,360x480,360x640,480x640,720x1280
315Illumination-Adaptive-Transformer■■■Low-light Image Enhancement
316night_enhancement■■■Low-light Image Enhancement
320Dehamer■■■Dehazing
323Stripformer■■■DeBlur
325DehazeFormer■■■Dehazing
344XYDeblur■■■DeBlur
348Bread■■■Low-light Image Enhancement
348PMN■■■DeNoise, Low-light Image Enhancement
351RFDN■■■x4
352MAXIM■■■Dehaze only
353ShadowFormer■■■Shadow Removal
354DEA-Net■■■DeHaze
359MSPFN■■■DeRain
361KBNet■■■Real Image Denoising
367FLW-Net■■■Low-light Image Enhancement
368C2PNet■■■DeHaze
370Semantic-Guided-Low-Light-Image-Enhancement■■■Low-light Image Enhancement
372URetinex-Net■■■Low-light Image Enhancement
375SCANet■■■DeHaze
377DRSformer■■■DeRain
385PairLIE■■■Low-light Image Enhancement
389WGWS-Net■■■DeRain,DeRainDrop,DeHaize,DeSnow
396MixDehazeNet■■■DeHaize
400CSRNet■■■Low-light Image Enhancement
404HDR-Transformer■■■
409nighttime_dehaze■■■DeHaze
411UDR-S2Former_deraining■■■DeRain
418Diffusion-Low-Light■■■Diffusion, Low-light Image Enhancement

12. Sound Classifier

No.Model NameLinkFP32FP16INT8TPUDQWQOVCMTFJSTF-TRTONNXRemarks
013ml-sound-classifier■■■
097YAMNet■■■
098SPICE■■■
118Speech-enhancement■■■WIP,EdgeTPU(LeakyLeRU)
120FRILL■■■nofrontend
177BirdNET-Lite■■■non-flex
381Whisper■■■
382Light-SERNet■■■

13. Natural Language Processing

No.Model NameLinkFP32FP16INT8TPUWQOVCMTFJSTF-TRTONNXRemarks
048Mobile_BERT■■■
121GPT2/DistillGPT2■■■
122DistillBert■■■

14. Text Recognition

No.Model NameLinkFP32FP16INT8TPUWQOVCMTFJSTF-TRTONNXRemarks
052Handwritten_Text_Recognition■■■
055Handwritten_Japanese_Recognition■■■
093ocr_japanese■■■120x160

15. Action Recognition

No.Model NameLinkFP32FP16INT8TPUDQWQOVCMTFJSTF-TRTONNXRemarks
092weld-porosity-detection-0001■■■
247PoseC3D■■■Skeleton-based/FineGYM,NTU60_XSub,NTU120_XSub,UCF101,HMDB51/1x20x48x64x64
248MS-G3D■■■Skeleton-based/Kinetics,NTU60,NTU120/1x3xTx25x2

16. Inpainting

No.Model NameLinkFP32FP16INT8TPUDQWQOVCMTFJSTF-TRTONNXRemarks
100HiFill■■■
163MST_inpainting■■■
273OPN(Onion-Peel Networks)■■■
274DeepFillv2■■■

17. GAN

No.Model NameLinkFP32FP16INT8TPUWQOVCMTFJSTF-TRTONNXRemarks
105MobileStyleGAN■■■
310attentive-gan-derainnet■■■DeRain/180x320,240x320,240x360,320x480,360x640,480x640,720x1280

18. Transformer

No.Model NameLinkFP32FP16INT8TPUWQOVCMTFJSTF-TRTONNXRemarks
127dino■■■experimental,dino_deits8/dino_deits16

19. Others

No.Model NameLinkFP32FP16INT8TPUDQWQOVCMTFJSTF-TRTONNXRemarks
091gaze-estimation-adas-0002■■■
102Coconet■■■magenta
108HAWP■■■Line Parsing,WIP
110L-CNN■■■Line Parsing,WIP
117DTLN■■■
119M-LSD■■■
131CFNet■■■256x256,512x768
139PSD-Principled-Synthetic-to-Real-Dehazing-Guided-by-Physical-Priors■■■
140Ultra-Fast-Lane-Detection■■■288x800
141lanenet-lane-detection■■■256x512
154driver-action-recognition-adas-0002-encoder■■■
155driver-action-recognition-adas-0002-decoder■■■
167LSTR■■■180x320,240x320,360x640,480x640,720x1280
229DexiNed■■■160x320,320x480,368x640,480x640,720x1280
233HRNet-for-Fashion-Landmark-Estimation■■■192x320,256x320,320x480,384x640,480x640,736x1280
237piano_transcription■■■1x160000,Nx160000
252RAFT■■■small,chairs,kitti,sintel,things/iters=10,20/240x320,360x480,480x640
254FullSubNet-plus■■■1x1x257x100,200,500,1000,2000,3000,5000,7000,8000,10000
255FILM■■■L1,Style,VGG/256x256,180x320,240x320,360x640,480x640,720x1280,1080x1920
260KP2D■■■ResNet/128x320,192x320,192x448,192x640,256x320,256x448,256x640,320x448,384x640,480x640,512x1280,736x1280
272CSFlow■■■chairs,kitti,things/iters=10,20/192x320,240x320,320x480,384x640,480x640,736x1280
276HybridNets■■■anchor_HxW.npy/256x384,256x512,384x512,384x640,384x1024,512x640,768x1280,1152x1920
278DWARF■■■StereoDepth+OpticalFlow,/192x320,256x320,384x640,512x640,512x640,768x1280
279F-Clip■■■Line Parsing/ALL/192x320,256x320,320x480,384x640,480x640,736x1280
288perceptual-reflection-removal■■■Reflection-Removal/180x320,240x320,360x480,360x640,480x640,720x1280
291SeAFusion■■■180x320,240x320,360x480,360x640,480x640,720x1280
297GazeNet■■■1x7x3x256x192/NxFx3x256x192
298DEQ-Flow■■■AGPL-3.0 license
306GMFlowNet■■■OpticalFlow/192x320,240x320,320x480,360x640,480x640,720x1280
309ImageForensicsOSN■■■forgery detection/180x320,240x320,320x480,360x640,480x640,720x1280
318pips■■■
324Ultra-Fast-Lane-Detection-v2■■■
326YOLOPv2■■■
328Stable_Diffusion■■■
339DeepLSD■■■
342ALIKE■■■
357Unimatch■■■OpticalFlow, StereoDepth
360PARSeq■■■Scene Text Recognition
366text_recognition_CRNN■■■CN/CH/EN
373LiteTrack■■■Tracking
374LaneSOD■■■Lane Segmentation
378P2PNet_tfkeras■■■
388LightGlue■■■Keypoint Matching
398L2CS-Net■■■Gaze Pose 448x448
401CLRerNet■■■Lane Detection
406DeDoDe■■■Keypoint Detection, Description, Matching
407Generalizing_Gaze_Estimation■■■Gaze Pose 160x160
408UAED■■■Edge Detectopm
413DocShadow■■■Document Shadow Removal
416GeoNet■■■MonoDepth, CameraPose, OpticalFlow
428ISR■■■Person ReID

Sample.1 - Object detection by video file

$ cd 006_mobilenetv2-ssdlite/02_voc/03_integer_quantization
$ ./download.sh && cd ..
$ python3 mobilenetv2ssdlite_movie_sync.py

004

Sample.2 - Object detection by USB Camera

$ cd 006_mobilenetv2-ssdlite/02_voc/03_integer_quantization
$ ./download.sh && cd ..
$ python3 mobilenetv2ssdlite_usbcam_sync.py

005

Sample.3 - Head Pose Estimation, Multi-stage inference with multi-model

$ cd 025_head_pose_estimation/03_integer_quantization
$ ./download.sh
$ python3 head_pose_estimation.py

006

Sample.4 - Semantic Segmentation, DeeplabV3-plus 256x256

$ cd 026_mobile-deeplabv3-plus/03_integer_quantization
$ ./download.sh
$ python3 deeplabv3plus_usbcam.py

007

Sample.5 - MediaPipe/FaceMesh, face_detection_front_128_weight_quant, face_landmark_192_weight_quant

Sample.6 - MediaPipe/Objectron, object_detection_3d_chair_640x480_weight_quant

Sample.7 - MediaPipe/Objectron, object_detection_3d_chair_640x480_openvino_FP32

Sample.8 - MediaPipe/BlazeFace, face_detection_front_128_integer_quant

Sample.9 - MediaPipe/Hand_Detection_and_Tracking(3D Hand Pose), hand_landmark_3d_256_integer_quant.tflite + palm_detection_builtin_256_integer_quant.tflite

Sample.10 - DBFace, 640x480_openvino_FP32

Sample.11 - Human_Pose_Estimation_3D, 640x480, Tensorflow.js + WebGL + Browser

Sample.12 - BlazePose Full Body, 640x480, Tensorflow.js + WebGL + Browser

Sample.13 - Facial Cartoonization, 640x480, OpenVINO Corei7 CPU only

1. Environment

2. Procedure

<details><summary>Procedure examples</summary><div>

2-1. MobileNetV3+DeeplabV3+PascalVOC

2-1-1. Preparation

$ cd ~
$ mkdir deeplab;cd deeplab
$ git clone --depth 1 https://github.com/tensorflow/models.git
$ cd models/research/deeplab/datasets
$ mkdir pascal_voc_seg

$ curl -sc /tmp/cookie \
  "https://drive.google.com/uc?export=download&id=1rATNHizJdVHnaJtt-hW9MOgjxoaajzdh" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie \
  "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1rATNHizJdVHnaJtt-hW9MOgjxoaajzdh" \
  -o pascal_voc_seg/VOCtrainval_11-May-2012.tar

$ sed -i -e "s/python .\/remove_gt_colormap.py/python3 .\/remove_gt_colormap.py/g" \
      -i -e "s/python .\/build_voc2012_data.py/python3 .\/build_voc2012_data.py/g" \
      download_and_convert_voc2012.sh

$ sh download_and_convert_voc2012.sh

$ cd ../..
$ mkdir -p deeplab/datasets/pascal_voc_seg/exp/train_on_train_set/train
$ mkdir -p deeplab/datasets/pascal_voc_seg/exp/train_on_train_set/eval
$ mkdir -p deeplab/datasets/pascal_voc_seg/exp/train_on_train_set/vis

$ export PATH_TO_TRAIN_DIR=${HOME}/deeplab/models/research/deeplab/datasets/pascal_voc_seg/exp/train_on_train_set/train
$ export PATH_TO_DATASET=${HOME}/deeplab/models/research/deeplab/datasets/pascal_voc_seg/tfrecord
$ export PYTHONPATH=${HOME}/deeplab/models/research:${HOME}/deeplab/models/research/deeplab:${HOME}/deeplab/models/research/slim:${PYTHONPATH}
# See feature_extractor.network_map for supported model variants.
# models/research/deeplab/core/feature_extractor.py

networks_map = {
    'mobilenet_v2': _mobilenet_v2,
    'mobilenet_v3_large_seg': mobilenet_v3_large_seg,
    'mobilenet_v3_small_seg': mobilenet_v3_small_seg,
    'resnet_v1_18': resnet_v1_beta.resnet_v1_18,
    'resnet_v1_18_beta': resnet_v1_beta.resnet_v1_18_beta,
    'resnet_v1_50': resnet_v1_beta.resnet_v1_50,
    'resnet_v1_50_beta': resnet_v1_beta.resnet_v1_50_beta,
    'resnet_v1_101': resnet_v1_beta.resnet_v1_101,
    'resnet_v1_101_beta': resnet_v1_beta.resnet_v1_101_beta,
    'xception_41': xception.xception_41,
    'xception_65': xception.xception_65,
    'xception_71': xception.xception_71,
    'nas_pnasnet': nas_network.pnasnet,
    'nas_hnasnet': nas_network.hnasnet,
}

2-1-2. "mobilenet_v3_small_seg" Float32 regular training

$ python3 deeplab/train.py \
    --logtostderr \
    --training_number_of_steps=500000 \
    --train_split="train" \
    --model_variant="mobilenet_v3_small_seg" \
    --decoder_output_stride=16 \
    --train_crop_size="513,513" \
    --train_batch_size=8 \
    --dataset="pascal_voc_seg" \
    --save_interval_secs=300 \
    --save_summaries_secs=300 \
    --save_summaries_images=True \
    --log_steps=100 \
    --train_logdir=${PATH_TO_TRAIN_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

2-1-3. "mobilenet_v3_large_seg" Float32 regular training

$ python3 deeplab/train.py \
    --logtostderr \
    --training_number_of_steps=1000000 \
    --train_split="train" \
    --model_variant="mobilenet_v3_large_seg" \
    --decoder_output_stride=16 \
    --train_crop_size="513,513" \
    --train_batch_size=8 \
    --dataset="pascal_voc_seg" \
    --save_interval_secs=300 \
    --save_summaries_secs=300 \
    --save_summaries_images=True \
    --log_steps=100 \
    --train_logdir=${PATH_TO_TRAIN_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

2-1-4. Visualize training status

$ tensorboard \
  --logdir ${HOME}/deeplab/models/research/deeplab/datasets/pascal_voc_seg/exp/train_on_train_set/train

   

2-2. MobileNetV3+DeeplabV3+Cityscaps - Post-training quantization

2-2-1. Preparation

$ cd ~
$ mkdir -p git/deeplab && cd git/deeplab
$ git clone --depth 1 https://github.com/tensorflow/models.git
$ cd models/research/deeplab/datasets
$ mkdir cityscapes && cd cityscapes

# Clone the script to generate Cityscapes Dataset.
$ git clone --depth 1 https://github.com/mcordts/cityscapesScripts.git
$ mv cityscapesScripts cityscapesScripts_ && \
  mv cityscapesScripts_/cityscapesscripts . && \
  rm -rf cityscapesScripts_

# Download Cityscapes Dataset.
# https://www.cityscapes-dataset.com/
# You will need to sign up and issue a userID and password to download the data set.
$ wget --keep-session-cookies --save-cookies=cookies.txt \
  --post-data 'username=(userid)&password=(password)&submit=Login' \
  https://www.cityscapes-dataset.com/login/
$ wget --load-cookies cookies.txt \
  --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=1
$ wget --load-cookies cookies.txt \
  --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=3
$ unzip gtFine_trainvaltest.zip && rm gtFine_trainvaltest.zip
$ rm README && rm license.txt
$ unzip leftImg8bit_trainvaltest.zip && rm leftImg8bit_trainvaltest.zip
$ rm README && rm license.txt

# Convert Cityscapes Dataset to TFRecords format.
$ cd ..
$ sed -i -e "s/python/python3/g" convert_cityscapes.sh
$ export PYTHONPATH=${HOME}/git/deeplab/models/research/deeplab/datasets/cityscapes:${PYTHONPATH}
$ sh convert_cityscapes.sh

# Create a checkpoint storage folder for training. If training is not required,
# there is no need to carry out.
$ cd ../..
$ mkdir -p deeplab/datasets/cityscapes/exp/train_on_train_set/train && \
  mkdir -p deeplab/datasets/cityscapes/exp/train_on_train_set/eval && \
  mkdir -p deeplab/datasets/cityscapes/exp/train_on_train_set/vis

# Download the DeepLabV3 trained model of the MobileNetV3 backbone.
$ curl -sc /tmp/cookie \
  "https://drive.google.com/uc?export=download&id=1f5ccaJmJBYwBmHvRQ77yGIUcXnqQIRY_" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie \
  "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1f5ccaJmJBYwBmHvRQ77yGIUcXnqQIRY_" \
  -o deeplab_mnv3_small_cityscapes_trainfine_2019_11_15.tar.gz
$ tar -zxvf deeplab_mnv3_small_cityscapes_trainfine_2019_11_15.tar.gz
$ rm deeplab_mnv3_small_cityscapes_trainfine_2019_11_15.tar.gz

$ curl -sc /tmp/cookie \
  "https://drive.google.com/uc?export=download&id=1QxS3G55rUQvuiBF-hztQv5zCkfPfwlVU" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie \
  "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1QxS3G55rUQvuiBF-hztQv5zCkfPfwlVU" \
  -o deeplab_mnv3_large_cityscapes_trainfine_2019_11_15.tar.gz
$ tar -zxvf deeplab_mnv3_large_cityscapes_trainfine_2019_11_15.tar.gz
$ rm deeplab_mnv3_large_cityscapes_trainfine_2019_11_15.tar.gz

$ export PATH_TO_INITIAL_CHECKPOINT=${HOME}/git/deeplab/models/research/deeplab_mnv3_small_cityscapes_trainfine/model.ckpt
$ export PATH_TO_DATASET=${HOME}/git/deeplab/models/research/deeplab/datasets/cityscapes/tfrecord
$ export PYTHONPATH=${HOME}/git/deeplab/models/research:${HOME}/git/deeplab/models/research/deeplab:${HOME}/git/deeplab/models/research/slim:${PYTHONPATH}

# Fix a bug in the data generator.
$ sed -i -e \
  "s/splits_to_sizes={'train_fine': 2975,/splits_to_sizes={'train': 2975,/g" \
  deeplab/datasets/data_generator.py

# Back up the trained model.
$ cd ${HOME}/git/deeplab/models/research
$ cp deeplab/export_model.py deeplab/export_model.py_org
$ cp deeplab_mnv3_small_cityscapes_trainfine/frozen_inference_graph.pb \
  deeplab_mnv3_small_cityscapes_trainfine/frozen_inference_graph_org.pb
$ cp deeplab_mnv3_large_cityscapes_trainfine/frozen_inference_graph.pb \
  deeplab_mnv3_large_cityscapes_trainfine/frozen_inference_graph_org.pb

# Customize "export_model.py" according to the input resolution. Must be (multiple of 8 + 1).
#   (example.1) 769 = 8 * 96 + 1
#   (example.2) 512 = 8 * 64 + 1
#   (example.3) 320 = 8 * 40 + 1
# And it is necessary to change from tf.uint8 type to tf.float32 type.
$ sed -i -e \
  "s/tf.placeholder(tf.uint8, \[1, None, None, 3\], name=_INPUT_NAME)/tf.placeholder(tf.float32, \[1, 769, 769, 3\], name=_INPUT_NAME)/g" \
  deeplab/export_model.py

2-2-2. Parameter sheet

# crop_size and image_pooling_crop_size are multiples of --decoder_output_stride + 1
# 769 = 8 * 96 + 1
# 513 = 8 * 64 + 1
# 321 = 8 * 40 + 1

# --initialize_last_layer=True initializes the final layer with the weight of
# tf_initial_checkpoint (inherits the weight)

# Named tuple to describe the dataset properties.
# deeplab/datasets/data_generator.py
DatasetDescriptor = collections.namedtuple(
    'DatasetDescriptor',
    [
        'splits_to_sizes',  # Splits of the dataset into training, val and test.
        'num_classes',  # Number of semantic classes, including the
                        # background class (if exists). For example, there
                        # are 20 foreground classes + 1 background class in
                        # the PASCAL VOC 2012 dataset. Thus, we set
                        # num_classes=21.
        'ignore_label',  # Ignore label value.
    ])

_CITYSCAPES_INFORMATION = DatasetDescriptor(
    splits_to_sizes={'train': 2975,
                     'train_coarse': 22973,
                     'trainval_fine': 3475,
                     'trainval_coarse': 23473,
                     'val_fine': 500,
                     'test_fine': 1525},
    num_classes=19,
    ignore_label=255,
)

_PASCAL_VOC_SEG_INFORMATION = DatasetDescriptor(
    splits_to_sizes={
        'train': 1464,
        'train_aug': 10582,
        'trainval': 2913,
        'val': 1449,
    },
    num_classes=21,
    ignore_label=255,
)

_ADE20K_INFORMATION = DatasetDescriptor(
    splits_to_sizes={
        'train': 20210,  # num of samples in images/training
        'val': 2000,  # num of samples in images/validation
    },
    num_classes=151,
    ignore_label=0,
)

_DATASETS_INFORMATION = {
    'cityscapes': _CITYSCAPES_INFORMATION,
    'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
    'ade20k': _ADE20K_INFORMATION,
}

# A map from network name to network function. model_variant.
# deeplab/core/feature_extractor.py
networks_map = {
    'mobilenet_v2': _mobilenet_v2,
    'mobilenet_v3_large_seg': mobilenet_v3_large_seg,
    'mobilenet_v3_small_seg': mobilenet_v3_small_seg,
    'resnet_v1_18': resnet_v1_beta.resnet_v1_18,
    'resnet_v1_18_beta': resnet_v1_beta.resnet_v1_18_beta,
    'resnet_v1_50': resnet_v1_beta.resnet_v1_50,
    'resnet_v1_50_beta': resnet_v1_beta.resnet_v1_50_beta,
    'resnet_v1_101': resnet_v1_beta.resnet_v1_101,
    'resnet_v1_101_beta': resnet_v1_beta.resnet_v1_101_beta,
    'xception_41': xception.xception_41,
    'xception_65': xception.xception_65,
    'xception_71': xception.xception_71,
    'nas_pnasnet': nas_network.pnasnet,
    'nas_hnasnet': nas_network.hnasnet,
}

2-2-3. "mobilenet_v3_small_seg" Export Model

Generate Freeze Graph (.pb) with INPUT Placeholder changed from checkpoint file (.ckpt).

$ python3 deeplab/export_model.py \
    --checkpoint_path=./deeplab_mnv3_small_cityscapes_trainfine/model.ckpt \
    --export_path=./deeplab_mnv3_small_cityscapes_trainfine/frozen_inference_graph.pb \
    --num_classes=19 \
    --crop_size=769 \
    --crop_size=769 \
    --model_variant="mobilenet_v3_small_seg" \
    --image_pooling_crop_size="769,769" \
    --image_pooling_stride=4,5 \
    --aspp_convs_filters=128 \
    --aspp_with_concat_projection=0 \
    --aspp_with_squeeze_and_excitation=1 \
    --decoder_use_sum_merge=1 \
    --decoder_filters=19 \
    --decoder_output_is_logits=1 \
    --image_se_uses_qsigmoid=1 \
    --image_pyramid=1 \
    --decoder_output_stride=8

2-2-4. "mobilenet_v3_large_seg" Export Model

Generate Freeze Graph (.pb) with INPUT Placeholder changed from checkpoint file (.ckpt).

$ python3 deeplab/export_model.py \
    --checkpoint_path=./deeplab_mnv3_large_cityscapes_trainfine/model.ckpt \
    --export_path=./deeplab_mnv3_large_cityscapes_trainfine/frozen_inference_graph.pb \
    --num_classes=19 \
    --crop_size=769 \
    --crop_size=769 \
    --model_variant="mobilenet_v3_large_seg" \
    --image_pooling_crop_size="769,769" \
    --image_pooling_stride=4,5 \
    --aspp_convs_filters=128 \
    --aspp_with_concat_projection=0 \
    --aspp_with_squeeze_and_excitation=1 \
    --decoder_use_sum_merge=1 \
    --decoder_filters=19 \
    --decoder_output_is_logits=1 \
    --image_se_uses_qsigmoid=1 \
    --image_pyramid=1 \
    --decoder_output_stride=8

If you follow the Google Colaboratory sample procedure, copy the "deeplab_mnv3_small_cityscapes_trainfine" folder and "deeplab_mnv3_large_cityscapes_trainfine" to your Google Drive "My Drive". It is not necessary if all procedures described in Google Colaboratory are performed in a PC environment. 001 002

2-2-5. Google Colaboratory - Post-training quantization - post_training_integer_quant.ipynb

https://colab.research.google.com/drive/1TtCJ-uMNTArpZxrf5DCNbZdn08DsiW8F    

2-3. MobileNetV3+DeeplabV3+Cityscaps - Quantization-aware training

2-3-1. "mobilenet_v3_small_seg" Quantization-aware training

$ cd ${HOME}/git/deeplab/models/research
$ export PATH_TO_TRAINED_FLOAT_MODEL=${HOME}/git/deeplab/models/research/deeplab_mnv3_small_cityscapes_trainfine/model.ckpt
$ export PATH_TO_TRAIN_DIR=${HOME}/git/deeplab/models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train
$ export PATH_TO_DATASET=${HOME}/git/deeplab/models/research/deeplab/datasets/cityscapes/tfrecord

# deeplab_mnv3_small_cityscapes_trainfine
$ python3 deeplab/train.py \
    --logtostderr \
    --training_number_of_steps=5000 \
    --train_split="train" \
    --model_variant="mobilenet_v3_small_seg" \
    --train_crop_size="769,769" \
    --train_batch_size=8 \
    --dataset="cityscapes" \
    --initialize_last_layer=False \
    --base_learning_rate=3e-5 \
    --quantize_delay_step=0 \
    --image_pooling_crop_size="769,769" \
    --image_pooling_stride=4,5 \
    --aspp_convs_filters=128 \
    --aspp_with_concat_projection=0 \
    --aspp_with_squeeze_and_excitation=1 \
    --decoder_use_sum_merge=1 \
    --decoder_filters=19 \
    --decoder_output_is_logits=1 \
    --image_se_uses_qsigmoid=1 \
    --image_pyramid=1 \
    --decoder_output_stride=8 \
    --save_interval_secs=300 \
    --save_summaries_secs=300 \
    --save_summaries_images=True \
    --log_steps=100 \
    --tf_initial_checkpoint=${PATH_TO_TRAINED_FLOAT_MODEL} \
    --train_logdir=${PATH_TO_TRAIN_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

2-3-2. "mobilenet_v3_large_seg" Quantization-aware training

$ cd ${HOME}/git/deeplab/models/research
$ export PATH_TO_TRAINED_FLOAT_MODEL=${HOME}/git/deeplab/models/research/deeplab_mnv3_large_cityscapes_trainfine/model.ckpt
$ export PATH_TO_TRAIN_DIR=${HOME}/git/deeplab/models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train
$ export PATH_TO_DATASET=${HOME}/git/deeplab/models/research/deeplab/datasets/cityscapes/tfrecord

# deeplab_mnv3_large_cityscapes_trainfine
$ python3 deeplab/train.py \
    --logtostderr \
    --training_number_of_steps=4350 \
    --train_split="train" \
    --model_variant="mobilenet_v3_large_seg" \
    --train_crop_size="769,769" \
    --train_batch_size=8 \
    --dataset="cityscapes" \
    --initialize_last_layer=False \
    --base_learning_rate=3e-5 \
    --quantize_delay_step=0 \
    --image_pooling_crop_size="769,769" \
    --image_pooling_stride=4,5 \
    --aspp_convs_filters=128 \
    --aspp_with_concat_projection=0 \
    --aspp_with_squeeze_and_excitation=1 \
    --decoder_use_sum_merge=1 \
    --decoder_filters=19 \
    --decoder_output_is_logits=1 \
    --image_se_uses_qsigmoid=1 \
    --image_pyramid=1 \
    --decoder_output_stride=8 \
    --save_interval_secs=300 \
    --save_summaries_secs=300 \
    --save_summaries_images=True \
    --log_steps=100 \
    --tf_initial_checkpoint=${PATH_TO_TRAINED_FLOAT_MODEL} \
    --train_logdir=${PATH_TO_TRAIN_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

The orange line is "deeplab_mnv3_small_cityscapes_trainfine" loss. The blue line is "deeplab_mnv3_large_cityscapes_trainfine" loss. 003    

2-4. MobileNetV2+DeeplabV3+coco/voc - Post-training quantization

2-4-1. Preparation

$ cd ${HOME}/git/deeplab/models/research

$ wget http://download.tensorflow.org/models/deeplabv3_mnv2_dm05_pascal_trainaug_2018_10_01.tar.gz
$ tar -zxvf deeplabv3_mnv2_dm05_pascal_trainaug_2018_10_01.tar.gz
$ rm deeplabv3_mnv2_dm05_pascal_trainaug_2018_10_01.tar.gz

$ wget http://download.tensorflow.org/models/deeplabv3_mnv2_dm05_pascal_trainval_2018_10_01.tar.gz
$ tar -zxvf deeplabv3_mnv2_dm05_pascal_trainval_2018_10_01.tar.gz
$ rm deeplabv3_mnv2_dm05_pascal_trainval_2018_10_01.tar.gz

$ wget http://download.tensorflow.org/models/deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz
$ tar -zxvf deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz
$ rm deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz

$ sed -i -e \
  "s/tf.placeholder(tf.uint8, \[1, None, None, 3\], name=_INPUT_NAME)/tf.placeholder(tf.float32, \[1, 257, 257, 3\], name=_INPUT_NAME)/g" \
  deeplab/export_model.py

$ export PYTHONPATH=${HOME}/git/deeplab/models/research:${HOME}/git/deeplab/models/research/deeplab:${HOME}/git/deeplab/models/research/slim:${PYTHONPATH}

$ python3 deeplab/export_model.py \
  --checkpoint_path=./deeplabv3_mnv2_dm05_pascal_trainaug/model.ckpt \
  --export_path=./deeplabv3_mnv2_dm05_pascal_trainaug/frozen_inference_graph.pb \
  --model_variant="mobilenet_v2" \
  --crop_size=257 \
  --crop_size=257 \
  --depth_multiplier=0.5

$ python3 deeplab/export_model.py \
  --checkpoint_path=./deeplabv3_mnv2_dm05_pascal_trainval/model.ckpt \
  --export_path=./deeplabv3_mnv2_dm05_pascal_trainval/frozen_inference_graph.pb \
  --model_variant="mobilenet_v2" \
  --crop_size=257 \
  --crop_size=257 \
  --depth_multiplier=0.5

$ python3 deeplab/export_model.py \
  --checkpoint_path=./deeplabv3_mnv2_pascal_train_aug/model.ckpt-30000 \
  --export_path=./deeplabv3_mnv2_pascal_train_aug/frozen_inference_graph.pb \
  --model_variant="mobilenet_v2" \
  --crop_size=257 \
  --crop_size=257

2-5. MobileNetV3-SSD+coco - Post-training quantization

2-5-1. Preparation

$ cd ~
$ sudo pip3 install tensorflow-gpu==1.15.0
$ git clone --depth 1 https://github.com/tensorflow/models.git
$ cd models/research

$ git clone https://github.com/cocodataset/cocoapi.git
$ cd cocoapi/PythonAPI
$ make
$ cp -r pycocotools ../..
$ cd ../..
$ wget -O protobuf.zip https://github.com/google/protobuf/releases/download/v3.0.0/protoc-3.0.0-linux-x86_64.zip
$ unzip protobuf.zip
$ ./bin/protoc object_detection/protos/*.proto --python_out=.

$ sudo apt-get install -y protobuf-compiler python3-pil python3-lxml python3-tk
$ sudo -H pip3 install Cython contextlib2 jupyter matplotlib

$ export PYTHONPATH=${PWD}:${PWD}/object_detection:${PWD}/slim:${PYTHONPATH}

$ mkdir -p ssd_mobilenet_v3_small_coco_2019_08_14 && cd ssd_mobilenet_v3_small_coco_2019_08_14
$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1uqaC0Y-yRtzkpu1EuZ3BzOyh9-i_3Qgi" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1uqaC0Y-yRtzkpu1EuZ3BzOyh9-i_3Qgi" -o ssd_mobilenet_v3_small_coco_2019_08_14.tar.gz
$ tar -zxvf ssd_mobilenet_v3_small_coco_2019_08_14.tar.gz
$ rm ssd_mobilenet_v3_small_coco_2019_08_14.tar.gz
$ cd ..

$ mkdir -p ssd_mobilenet_v3_large_coco_2019_08_14 && cd ssd_mobilenet_v3_large_coco_2019_08_14
$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1NGLjKRWDQZ_kibQHlLZ7Eetuuz1waC7X" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1NGLjKRWDQZ_kibQHlLZ7Eetuuz1waC7X" -o ssd_mobilenet_v3_large_coco_2019_08_14.tar.gz
$ tar -zxvf ssd_mobilenet_v3_large_coco_2019_08_14.tar.gz
$ rm ssd_mobilenet_v3_large_coco_2019_08_14.tar.gz
$ cd ..

2-5-2. Create a conversion script from checkpoint format to saved_model format

import tensorflow as tf
import os
import shutil
from tensorflow.python.saved_model import tag_constants
from tensorflow.python.tools import freeze_graph
from tensorflow.python import ops
from tensorflow.tools.graph_transforms import TransformGraph

def freeze_model(saved_model_dir, output_node_names, output_filename):
  output_graph_filename = os.path.join(saved_model_dir, output_filename)
  initializer_nodes = ''
  freeze_graph.freeze_graph(
      input_saved_model_dir=saved_model_dir,
      output_graph=output_graph_filename,
      saved_model_tags = tag_constants.SERVING,
      output_node_names=output_node_names,
      initializer_nodes=initializer_nodes,
      input_graph=None,
      input_saver=False,
      input_binary=False,
      input_checkpoint=None,
      restore_op_name=None,
      filename_tensor_name=None,
      clear_devices=True,
      input_meta_graph=False,
  )

def get_graph_def_from_file(graph_filepath):
  tf.reset_default_graph()
  with ops.Graph().as_default():
    with tf.gfile.GFile(graph_filepath, 'rb') as f:
      graph_def = tf.GraphDef()
      graph_def.ParseFromString(f.read())
      return graph_def

def optimize_graph(model_dir, graph_filename, transforms, input_name, output_names, outname='optimized_model.pb'):
  input_names = [input_name] # change this as per how you have saved the model
  graph_def = get_graph_def_from_file(os.path.join(model_dir, graph_filename))
  optimized_graph_def = TransformGraph(
      graph_def,
      input_names,
      output_names,
      transforms)
  tf.train.write_graph(optimized_graph_def,
                      logdir=model_dir,
                      as_text=False,
                      name=outname)
  print('Graph optimized!')

def convert_graph_def_to_saved_model(export_dir, graph_filepath, input_name, outputs):
  graph_def = get_graph_def_from_file(graph_filepath)
  with tf.Session(graph=tf.Graph()) as session:
    tf.import_graph_def(graph_def, name='')
    tf.compat.v1.saved_model.simple_save(
        session,
        export_dir,# change input_image to node.name if you know the name
        inputs={input_name: session.graph.get_tensor_by_name('{}:0'.format(node.name))
            for node in graph_def.node if node.op=='Placeholder'},
        outputs={t.rstrip(":0"):session.graph.get_tensor_by_name(t) for t in outputs}
    )
    print('Optimized graph converted to SavedModel!')

tf.compat.v1.enable_eager_execution()

# Look up the name of the placeholder for the input node
graph_def=get_graph_def_from_file('./ssd_mobilenet_v3_small_coco_2019_08_14/frozen_inference_graph.pb')
input_name_small=""
for node in graph_def.node:
    if node.op=='Placeholder':
        print("##### ssd_mobilenet_v3_small_coco_2019_08_14 - Input Node Name #####", node.name) # this will be the input node
        input_name_small=node.name

# Look up the name of the placeholder for the input node
graph_def=get_graph_def_from_file('./ssd_mobilenet_v3_large_coco_2019_08_14/frozen_inference_graph.pb')
input_name_large=""
for node in graph_def.node:
    if node.op=='Placeholder':
        print("##### ssd_mobilenet_v3_large_coco_2019_08_14 - Input Node Name #####", node.name) # this will be the input node
        input_name_large=node.name

# ssd_mobilenet_v3 output names
output_node_names = ['raw_outputs/class_predictions','raw_outputs/box_encodings']
outputs = ['raw_outputs/class_predictions:0','raw_outputs/box_encodings:0']

# Optimizing the graph via TensorFlow library
transforms = []
optimize_graph('./ssd_mobilenet_v3_small_coco_2019_08_14', 'frozen_inference_graph.pb', transforms, input_name_small, output_node_names, outname='optimized_model_small.pb')
optimize_graph('./ssd_mobilenet_v3_large_coco_2019_08_14', 'frozen_inference_graph.pb', transforms, input_name_large, output_node_names, outname='optimized_model_large.pb')

# convert this to a s TF Serving compatible mode - ssd_mobilenet_v3_small_coco_2019_08_14
shutil.rmtree('./ssd_mobilenet_v3_small_coco_2019_08_14/0', ignore_errors=True)
convert_graph_def_to_saved_model('./ssd_mobilenet_v3_small_coco_2019_08_14/0',
                                 './ssd_mobilenet_v3_small_coco_2019_08_14/optimized_model_small.pb', input_name_small, outputs)

# convert this to a s TF Serving compatible mode - ssd_mobilenet_v3_large_coco_2019_08_14
shutil.rmtree('./ssd_mobilenet_v3_large_coco_2019_08_14/0', ignore_errors=True)
convert_graph_def_to_saved_model('./ssd_mobilenet_v3_large_coco_2019_08_14/0',
                                 './ssd_mobilenet_v3_large_coco_2019_08_14/optimized_model_large.pb', input_name_large, outputs)

2-5-3. Confirm the structure of saved_model 【ssd_mobilenet_v3_small_coco_2019_08_14】

$ saved_model_cli show --dir ./ssd_mobilenet_v3_small_coco_2019_08_14/0 --all

MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['normalized_input_image_tensor'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 320, 320, 3)
        name: normalized_input_image_tensor:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['raw_outputs/box_encodings'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 2034, 4)
        name: raw_outputs/box_encodings:0
    outputs['raw_outputs/class_predictions'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 2034, 91)
        name: raw_outputs/class_predictions:0
  Method name is: tensorflow/serving/predict

2-5-4. Confirm the structure of saved_model 【ssd_mobilenet_v3_large_coco_2019_08_14】

$ saved_model_cli show --dir ./ssd_mobilenet_v3_large_coco_2019_08_14/0 --all

MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['normalized_input_image_tensor'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 320, 320, 3)
        name: normalized_input_image_tensor:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['raw_outputs/box_encodings'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 2034, 4)
        name: raw_outputs/box_encodings:0
    outputs['raw_outputs/class_predictions'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 2034, 91)
        name: raw_outputs/class_predictions:0
  Method name is: tensorflow/serving/predict

2-5-5. Creating the destination path for the calibration test dataset 6GB

$ curl -sc /tmp/cookie "https://drive.google.com/uc?export=download&id=1Uk9F4Tc-9UgnvARIVkloSoePUynyST6E" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1Uk9F4Tc-9UgnvARIVkloSoePUynyST6E" -o TFDS.tar.gz
$ tar -zxvf TFDS.tar.gz
$ rm TFDS.tar.gz

2-5-6. Quantization

2-5-6-1. ssd_mobilenet_v3_small_coco_2019_08_14
import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np

def representative_dataset_gen():
  for data in raw_test_data.take(100):
    image = data['image'].numpy()
    image = tf.image.resize(image, (320, 320))
    image = image[np.newaxis,:,:,:]
    yield [image]

tf.compat.v1.enable_eager_execution()

# Generating a calibration data set
#raw_test_data, info = tfds.load(name="coco/2017", with_info=True, split="test", data_dir="./TFDS")
raw_test_data, info = tfds.load(name="coco/2017", with_info=True, split="test", data_dir="./TFDS", download=False)
print(info)

# Weight Quantization - Input/Output=float32
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_small_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_small_coco_2019_08_14/mobilenet_v3_small_weight_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Weight Quantization complete! - mobilenet_v3_small_weight_quant.tflite")

# Integer Quantization - Input/Output=float32
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_small_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_small_coco_2019_08_14/mobilenet_v3_small_integer_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Integer Quantization complete! - mobilenet_v3_small_integer_quant.tflite")

# Full Integer Quantization - Input/Output=int8
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_small_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_small_coco_2019_08_14/mobilenet_v3_small_full_integer_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Full Integer Quantization complete! - mobilenet_v3_small_full_integer_quant.tflite")
2-5-6-2. ssd_mobilenet_v3_large_coco_2019_08_14
import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np

def representative_dataset_gen():
  for data in raw_test_data.take(100):
    image = data['image'].numpy()
    image = tf.image.resize(image, (320, 320))
    image = image[np.newaxis,:,:,:]
    yield [image]

tf.compat.v1.enable_eager_execution()

# Generating a calibration data set
#raw_test_data, info = tfds.load(name="coco/2017", with_info=True, split="test", data_dir="./TFDS")
raw_test_data, info = tfds.load(name="coco/2017", with_info=True, split="test", data_dir="./TFDS", download=False)

# Weight Quantization - Input/Output=float32
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_large_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_large_coco_2019_08_14/mobilenet_v3_large_weight_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Weight Quantization complete! - mobilenet_v3_large_weight_quant.tflite")

# Integer Quantization - Input/Output=float32
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_large_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_large_coco_2019_08_14/mobilenet_v3_large_integer_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Integer Quantization complete! - mobilenet_v3_large_integer_quant.tflite")

# Full Integer Quantization - Input/Output=int8
converter = tf.lite.TFLiteConverter.from_saved_model('./ssd_mobilenet_v3_large_coco_2019_08_14/0')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset_gen
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_quant_model = converter.convert()
with open('./ssd_mobilenet_v3_large_coco_2019_08_14/mobilenet_v3_large_full_integer_quant.tflite', 'wb') as w:
    w.write(tflite_quant_model)
print("Full Integer Quantization complete! - mobilenet_v3_large_full_integer_quant.tflite")

2-6. MobileNetV2-SSDLite+VOC - Training -> Integer Quantization

2-6-1. Training

Learning with the MobileNetV2-SSDLite Pascal-VOC dataset [Remake of Docker version]

2-6-2. Export model (--add_postprocessing_op=True)

06_mobilenetv2-ssdlite/02_voc/01_float32/00_export_tflite_model.txt

2-6-3. Integer Quantization

06_mobilenetv2-ssdlite/02_voc/01_float32/03_integer_quantization_with_postprocess.py

</div></details>

3. TFLite Model Benchmark

$ sudo apt-get install python-future

## Bazel for Ubuntu18.04 x86_64 install
$ wget https://github.com/bazelbuild/bazel/releases/download/2.0.0/bazel-2.0.0-installer-linux-x86_64.sh
$ sudo chmod +x bazel-2.0.0-installer-linux-x86_64.sh
$ ./bazel-2.0.0-installer-linux-x86_64.sh
$ sudo apt-get install -y openjdk-8-jdk

## Bazel for RaspberryPi3/4 Raspbian/Debian Buster armhf install
$ wget https://github.com/PINTO0309/Bazel_bin/raw/main/3.1.0/Raspbian_Debian_Buster_armhf/openjdk-8-jdk/install.sh
$ ./install.sh
$ curl -sc /tmp/cookie \
  "https://drive.google.com/uc?export=download&id=1LQUSal55R6fmawZS9zZuk6-5ZFOdUqRK" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie \
  "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1LQUSal55R6fmawZS9zZuk6-5ZFOdUqRK" \
  -o adoptopenjdk-8-hotspot_8u222-b10-2_armhf.deb
$ sudo apt-get install -y ./adoptopenjdk-8-hotspot_8u222-b10-2_armhf.deb

## Bazel for RaspberryPi3/4 Raspbian/Debian Buster aarch64 install
$ wget https://github.com/PINTO0309/Bazel_bin/raw/main/3.1.0/Raspbian_Debian_Buster_aarch64/openjdk-8-jdk/install.sh
$ ./install.sh
$ curl -sc /tmp/cookie \
  "https://drive.google.com/uc?export=download&id=1VwLxzT3EOTbhSzwvRF2H4ChTQyTQBt3x" > /dev/null
$ CODE="$(awk '/_warning_/ {print $NF}' /tmp/cookie)"
$ curl -Lb /tmp/cookie \
  "https://drive.google.com/uc?export=download&confirm=${CODE}&id=1VwLxzT3EOTbhSzwvRF2H4ChTQyTQBt3x" \
  -o adoptopenjdk-8-hotspot_8u222-b10-2_arm64.deb
$ sudo apt-get install -y ./adoptopenjdk-8-hotspot_8u222-b10-2_arm64.deb

## Clone Tensorflow v2.1.0+
$ git clone --depth 1 https://github.com/tensorflow/tensorflow.git
$ cd tensorflow

## Build and run TFLite Model Benchmark Tool
$ bazel run -c opt tensorflow/lite/tools/benchmark:benchmark_model -- \
  --graph=${HOME}/Downloads/deeplabv3_257_mv_gpu.tflite \
  --num_threads=4 \
  --warmup_runs=1 \
  --enable_op_profiling=true

$ bazel run -c opt tensorflow/lite/tools/benchmark:benchmark_model -- \
  --graph=${HOME}/Downloads/deeplabv3_257_mv_gpu.tflite \
  --num_threads=4 \
  --warmup_runs=1 \
  --use_xnnpack=true \
  --enable_op_profiling=true

$ bazel run \
  -c opt \
  --config=noaws \
  --config=nohdfs \
  --config=nonccl \
  tensorflow/lite/tools/benchmark:benchmark_model_plus_flex -- \
  --graph=${HOME}/git/tf-monodepth2/monodepth2_flexdelegate_weight_quant.tflite \
  --num_threads=4 \
  --warmup_runs=1 \
  --enable_op_profiling=true

$ bazel run \
  -c opt \
  --config=noaws \
  --config=nohdfs \
  --config=nonccl \
  tensorflow/lite/tools/benchmark:benchmark_model_plus_flex -- \
  --graph=${HOME}/git/tf-monodepth2/monodepth2_flexdelegate_weight_quant.tflite \
  --num_threads=4 \
  --warmup_runs=1 \
  --use_xnnpack=true \
  --enable_op_profiling=true
<details><summary>x86_64 deeplab_mnv3_small_weight_quant_769.tflite Benchmark</summary><div>
Number of nodes executed: 171
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       45	  1251.486	    67.589%	    67.589%	     0.000	        0
	       DEPTHWISE_CONV_2D	       11	   438.764	    23.696%	    91.286%	     0.000	        0
	              HARD_SWISH	       16	    54.855	     2.963%	    94.248%	     0.000	        0
	                 ARG_MAX	        1	    24.850	     1.342%	    95.591%	     0.000	        0
	         RESIZE_BILINEAR	        5	    23.805	     1.286%	    96.876%	     0.000	        0
	                     MUL	       30	    14.914	     0.805%	    97.682%	     0.000	        0
	                     ADD	       18	    10.646	     0.575%	    98.257%	     0.000	        0
	       SPACE_TO_BATCH_ND	        7	     9.567	     0.517%	    98.773%	     0.000	        0
	       BATCH_TO_SPACE_ND	        7	     7.431	     0.401%	    99.175%	     0.000	        0
	                     SUB	        2	     6.131	     0.331%	    99.506%	     0.000	        0
	         AVERAGE_POOL_2D	       10	     5.435	     0.294%	    99.799%	     0.000	        0
	                 RESHAPE	        6	     2.171	     0.117%	    99.916%	     0.000	        0
	                     PAD	        1	     0.660	     0.036%	    99.952%	     0.000	        0
	                    CAST	        2	     0.601	     0.032%	    99.985%	     0.000	        0
	           STRIDED_SLICE	        1	     0.277	     0.015%	   100.000%	     0.000	        0
	        Misc Runtime Ops	        1	     0.008	     0.000%	   100.000%	    33.552	        0
	              DEQUANTIZE	        8	     0.000	     0.000%	   100.000%	     0.000	        0

Timings (microseconds): count=52 first=224 curr=1869070 min=224 max=2089397 avg=1.85169e+06 std=373988
Memory (bytes): count=0
171 nodes observed
</div></details> <details><summary>x86_64 deeplab_mnv3_large_weight_quant_769.tflite Benchmark</summary><div>
Number of nodes executed: 194
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       51	  4123.348	    82.616%	    82.616%	     0.000	        0
	       DEPTHWISE_CONV_2D	       15	   628.139	    12.586%	    95.202%	     0.000	        0
	              HARD_SWISH	       15	    90.448	     1.812%	    97.014%	     0.000	        0
	                     MUL	       32	    29.393	     0.589%	    97.603%	     0.000	        0
	                 ARG_MAX	        1	    22.866	     0.458%	    98.061%	     0.000	        0
	                     ADD	       25	    22.860	     0.458%	    98.519%	     0.000	        0
	         RESIZE_BILINEAR	        5	    22.494	     0.451%	    98.970%	     0.000	        0
	       SPACE_TO_BATCH_ND	        8	    18.518	     0.371%	    99.341%	     0.000	        0
	       BATCH_TO_SPACE_ND	        8	    15.522	     0.311%	    99.652%	     0.000	        0
	         AVERAGE_POOL_2D	        9	     7.855	     0.157%	    99.809%	     0.000	        0
	                     SUB	        2	     5.896	     0.118%	    99.928%	     0.000	        0
	                 RESHAPE	        6	     2.133	     0.043%	    99.970%	     0.000	        0
	                     PAD	        1	     0.631	     0.013%	    99.983%	     0.000	        0
	                    CAST	        2	     0.575	     0.012%	    99.994%	     0.000	        0
	           STRIDED_SLICE	        1	     0.260	     0.005%	   100.000%	     0.000	        0
	        Misc Runtime Ops	        1	     0.012	     0.000%	   100.000%	    38.304	        0
	              DEQUANTIZE	       12	     0.003	     0.000%	   100.000%	     0.000	        0

Timings (microseconds): count=31 first=193 curr=5276579 min=193 max=5454605 avg=4.99104e+06 std=1311782
Memory (bytes): count=0
194 nodes observed
</div></details> <details><summary>Ubuntu 19.10 aarch64 + RaspberryPi4 deeplab_v3_plus_mnv3_decoder_256_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 180
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       38	    37.595	    45.330%	    45.330%	     0.000	       38
	                     ADD	       37	    12.319	    14.854%	    60.184%	     0.000	       37
	       DEPTHWISE_CONV_2D	       17	    11.424	    13.774%	    73.958%	     0.000	       17
	         RESIZE_BILINEAR	        4	     7.336	     8.845%	    82.804%	     0.000	        4
	                     MUL	        9	     4.204	     5.069%	    87.873%	     0.000	        9
	                QUANTIZE	       13	     3.976	     4.794%	    92.667%	     0.000	       13
	         AVERAGE_POOL_2D	        9	     1.809	     2.181%	    94.848%	     0.000	        9
	                     DIV	        9	     1.167	     1.407%	    96.255%	     0.000	        9
	                 ARG_MAX	        1	     1.137	     1.371%	    97.626%	     0.000	        1
	           CONCATENATION	        2	     0.780	     0.940%	    98.566%	     0.000	        2
	         FULLY_CONNECTED	       16	     0.715	     0.862%	    99.428%	     0.000	       16
	              DEQUANTIZE	        9	     0.473	     0.570%	    99.999%	     0.000	        9
	                 RESHAPE	       16	     0.001	     0.001%	   100.000%	     0.000	       16

Timings (microseconds): count=50 first=83065 curr=82874 min=82675 max=85743 avg=83036 std=499
Memory (bytes): count=0
180 nodes observed
</div></details> <details><summary>Ubuntu 19.10 aarch64 + RaspberryPi4 deeplab_v3_plus_mnv2_decoder_256_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 81
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       41	    47.427	    65.530%	    65.530%	     0.000	       41
	       DEPTHWISE_CONV_2D	       19	    11.114	    15.356%	    80.887%	     0.000	       19
	         RESIZE_BILINEAR	        4	     7.342	    10.145%	    91.031%	     0.000	        4
	                QUANTIZE	        3	     2.953	     4.080%	    95.112%	     0.000	        3
	                     ADD	       10	     1.633	     2.256%	    97.368%	     0.000	       10
	                 ARG_MAX	        1	     1.137	     1.571%	    98.939%	     0.000	        1
	           CONCATENATION	        2	     0.736	     1.017%	    99.956%	     0.000	        2
	         AVERAGE_POOL_2D	        1	     0.032	     0.044%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=72544 curr=72425 min=72157 max=72745 avg=72412.9 std=137
Memory (bytes): count=0
81 nodes observed
</div></details> <details><summary>Ubuntu 19.10 aarch64 + RaspberryPi4 mobilenet_v3_small_full_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 176
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       61	    10.255	    36.582%	    36.582%	     0.000	       61
	       DEPTHWISE_CONV_2D	       27	     5.058	    18.043%	    54.625%	     0.000	       27
	                     MUL	       26	     5.056	    18.036%	    72.661%	     0.000	       26
	                     ADD	       14	     4.424	    15.781%	    88.442%	     0.000	       14
	                QUANTIZE	       13	     1.633	     5.825%	    94.267%	     0.000	       13
	              HARD_SWISH	       10	     0.918	     3.275%	    97.542%	     0.000	       10
	                LOGISTIC	        1	     0.376	     1.341%	    98.883%	     0.000	        1
	         AVERAGE_POOL_2D	        9	     0.199	     0.710%	    99.593%	     0.000	        9
	           CONCATENATION	        2	     0.084	     0.300%	    99.893%	     0.000	        2
	                 RESHAPE	       13	     0.030	     0.107%	   100.000%	     0.000	       13

Timings (microseconds): count=50 first=28827 curr=28176 min=27916 max=28827 avg=28121.2 std=165
Memory (bytes): count=0
176 nodes observed
</div></details> <details><summary>Ubuntu 19.10 aarch64 + RaspberryPi4 mobilenet_v3_small_weight_quant.tflite Benchmark</summary><div>
Number of nodes executed: 186
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       61	    82.600	    79.265%	    79.265%	     0.000	       61
	       DEPTHWISE_CONV_2D	       27	     8.198	     7.867%	    87.132%	     0.000	       27
	                     MUL	       26	     4.866	     4.670%	    91.802%	     0.000	       26
	                     ADD	       14	     4.863	     4.667%	    96.469%	     0.000	       14
	                LOGISTIC	        1	     1.645	     1.579%	    98.047%	     0.000	        1
	         AVERAGE_POOL_2D	        9	     0.761	     0.730%	    98.777%	     0.000	        9
	              HARD_SWISH	       10	     0.683	     0.655%	    99.433%	     0.000	       10
	           CONCATENATION	        2	     0.415	     0.398%	    99.831%	     0.000	        2
	                 RESHAPE	       13	     0.171	     0.164%	    99.995%	     0.000	       13
	              DEQUANTIZE	       23	     0.005	     0.005%	   100.000%	     0.000	       23

Timings (microseconds): count=50 first=103867 curr=103937 min=103708 max=118926 avg=104299 std=2254
Memory (bytes): count=0
186 nodes observed
</div></details> <details><summary>Ubuntu 19.10 aarch64 + RaspberryPi4 Posenet model-mobilenet_v1_101_257_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 38
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       18	    31.906	    83.360%	    83.360%	     0.000	        0
	       DEPTHWISE_CONV_2D	       13	     5.959	    15.569%	    98.929%	     0.000	        0
	                QUANTIZE	        1	     0.223	     0.583%	    99.511%	     0.000	        0
	        Misc Runtime Ops	        1	     0.148	     0.387%	    99.898%	    96.368	        0
	              DEQUANTIZE	        4	     0.030	     0.078%	    99.976%	     0.000	        0
	                LOGISTIC	        1	     0.009	     0.024%	   100.000%	     0.000	        0

Timings (microseconds): count=70 first=519 curr=53370 min=519 max=53909 avg=38296 std=23892
Memory (bytes): count=0
38 nodes observed
</div></details> <details><summary>Ubuntu 19.10 aarch64 + RaspberryPi4 MobileNetV2-SSDLite ssdlite_mobilenet_v2_coco_300_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 128
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       55	    27.253	    71.185%	    71.185%	     0.000	        0
	       DEPTHWISE_CONV_2D	       33	     8.024	    20.959%	    92.143%	     0.000	        0
	                     ADD	       10	     1.565	     4.088%	    96.231%	     0.000	        0
	                QUANTIZE	       11	     0.546	     1.426%	    97.657%	     0.000	        0
	        Misc Runtime Ops	        1	     0.368	     0.961%	    98.618%	   250.288	        0
	                LOGISTIC	        1	     0.253	     0.661%	    99.279%	     0.000	        0
	              DEQUANTIZE	        2	     0.168	     0.439%	    99.718%	     0.000	        0
	           CONCATENATION	        2	     0.077	     0.201%	    99.919%	     0.000	        0
	                 RESHAPE	       13	     0.031	     0.081%	   100.000%	     0.000	        0

Timings (microseconds): count=70 first=1289 curr=53049 min=1289 max=53590 avg=38345.2 std=23436
Memory (bytes): count=0
128 nodes observed
</div></details> <details><summary>Ubuntu 19.10 aarch64 + RaspberryPi4 ml-sound-classifier mobilenetv2_fsd2018_41cls_weight_quant.tflite Benchmark</summary><div>
Number of nodes executed: 111
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 MINIMUM	       35	    10.020	    45.282%	    45.282%	     0.000	       35
	                 CONV_2D	       34	     8.376	    37.852%	    83.134%	     0.000	       34
	       DEPTHWISE_CONV_2D	       18	     1.685	     7.615%	    90.749%	     0.000	       18
	                    MEAN	        1	     1.422	     6.426%	    97.176%	     0.000	        1
	         FULLY_CONNECTED	        2	     0.589	     2.662%	    99.837%	     0.000	        2
	                     ADD	       10	     0.031	     0.140%	    99.977%	     0.000	       10
	                 SOFTMAX	        1	     0.005	     0.023%	   100.000%	     0.000	        1
	              DEQUANTIZE	       10	     0.000	     0.000%	   100.000%	     0.000	       10

Timings (microseconds): count=50 first=22417 curr=22188 min=22041 max=22417 avg=22182 std=70
Memory (bytes): count=0
111 nodes observed
</div></details> <details><summary>Ubuntu 19.10 aarch64 + RaspberryPi4 ml-sound-classifier mobilenetv2_fsd2018_41cls_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 173
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                QUANTIZE	       70	     1.117	    23.281%	    23.281%	     0.000	        0
	                 MINIMUM	       35	     1.104	    23.010%	    46.290%	     0.000	        0
	                 CONV_2D	       34	     0.866	    18.049%	    64.339%	     0.000	        0
	                    MEAN	        1	     0.662	    13.797%	    78.137%	     0.000	        0
	       DEPTHWISE_CONV_2D	       18	     0.476	     9.921%	    88.058%	     0.000	        0
	         FULLY_CONNECTED	        2	     0.251	     5.231%	    93.289%	     0.000	        0
	        Misc Runtime Ops	        1	     0.250	     5.211%	    98.499%	    71.600	        0
	                     ADD	       10	     0.071	     1.480%	    99.979%	     0.000	        0
	                 SOFTMAX	        1	     0.001	     0.021%	   100.000%	     0.000	        0
	              DEQUANTIZE	        1	     0.000	     0.000%	   100.000%	     0.000	        0

Timings (microseconds): count=198 first=477 curr=9759 min=477 max=10847 avg=4876.6 std=4629
Memory (bytes): count=0
173 nodes observed
</div></details> <details><summary>Raspbian Buster aarch64 + RaspberryPi4 deeplabv3_mnv2_pascal_trainval_257_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 82
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       38	   103.576	    56.077%	    56.077%	     0.000	       38
	       DEPTHWISE_CONV_2D	       17	    33.151	    17.948%	    74.026%	     0.000	       17
	         RESIZE_BILINEAR	        3	    15.143	     8.199%	    82.224%	     0.000	        3
	                     SUB	        2	    10.908	     5.906%	    88.130%	     0.000	        2
	                     ADD	       11	     9.821	     5.317%	    93.447%	     0.000	       11
	                 ARG_MAX	        1	     8.824	     4.777%	    98.225%	     0.000	        1
	                     PAD	        1	     1.024	     0.554%	    98.779%	     0.000	        1
	                QUANTIZE	        2	     0.941	     0.509%	    99.289%	     0.000	        2
	                     MUL	        1	     0.542	     0.293%	    99.582%	     0.000	        1
	           CONCATENATION	        1	     0.365	     0.198%	    99.780%	     0.000	        1
	         AVERAGE_POOL_2D	        1	     0.150	     0.081%	    99.861%	     0.000	        1
	                 RESHAPE	        2	     0.129	     0.070%	    99.931%	     0.000	        2
	             EXPAND_DIMS	        2	     0.128	     0.069%	   100.000%	     0.000	        2

Timings (microseconds): count=50 first=201226 curr=176476 min=176476 max=201226 avg=184741 std=4791
Memory (bytes): count=0
82 nodes observed
</div></details> <details><summary>Ubuntu 18.04 x86_64 + XNNPACK enabled + 10 Threads deeplabv3_257_mv_gpu.tflite Benchmark</summary><div>
Number of nodes executed: 8
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                DELEGATE	        3	     6.716	    61.328%	    61.328%	     0.000	        3
	         RESIZE_BILINEAR	        3	     3.965	    36.207%	    97.534%	     0.000	        3
	           CONCATENATION	        1	     0.184	     1.680%	    99.215%	     0.000	        1
	         AVERAGE_POOL_2D	        1	     0.086	     0.785%	   100.000%	     0.000	        1

Timings (microseconds): count=91 first=11051 curr=10745 min=10521 max=12552 avg=10955.4 std=352
Memory (bytes): count=0
8 nodes observed

Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the actual memory footprint of the model at runtime. Take the information at your discretion.
Peak memory footprint (MB): init=3.58203 overall=56.0703
</div></details> <details><summary>Ubuntu 18.04 x86_64 + XNNPACK disabled + 10 Threads deeplabv3_257_mv_gpu.tflite Benchmark</summary><div>
Number of nodes executed: 70
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	       DEPTHWISE_CONV_2D	       17	    41.704	    68.372%	    68.372%	     0.000	       17
	                 CONV_2D	       38	    15.932	    26.120%	    94.491%	     0.000	       38
	         RESIZE_BILINEAR	        3	     3.060	     5.017%	    99.508%	     0.000	        3
	                     ADD	       10	     0.149	     0.244%	    99.752%	     0.000	       10
	           CONCATENATION	        1	     0.109	     0.179%	    99.931%	     0.000	        1
	         AVERAGE_POOL_2D	        1	     0.042	     0.069%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=59929 curr=60534 min=59374 max=63695 avg=61031.6 std=1182
Memory (bytes): count=0
70 nodes observed

Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the actual memory footprint of the model at runtime. Take the information at your discretion.
Peak memory footprint (MB): init=0 overall=13.7109
</div></details> <details><summary>Ubuntu 18.04 x86_64 + XNNPACK enabled + 4 Threads Faster-Grad-CAM weights_weight_quant.tflite Benchmark</summary><div>
umber of nodes executed: 74
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       31	     4.947	    77.588%	    77.588%	     0.000	       31
	                DELEGATE	       17	     0.689	    10.806%	    88.394%	     0.000	       17
	       DEPTHWISE_CONV_2D	       10	     0.591	     9.269%	    97.663%	     0.000	       10
	                    MEAN	        1	     0.110	     1.725%	    99.388%	     0.000	        1
	                     PAD	        5	     0.039	     0.612%	   100.000%	     0.000	        5
	              DEQUANTIZE	       10	     0.000	     0.000%	   100.000%	     0.000	       10

Timings (microseconds): count=155 first=6415 curr=6443 min=6105 max=6863 avg=6409.22 std=69
Memory (bytes): count=0
74 nodes observed
</div></details> <details><summary>RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads Faster-Grad-CAM weights_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 72
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       35	     0.753	    34.958%	    34.958%	     0.000	        0
	                     PAD	        5	     0.395	    18.338%	    53.296%	     0.000	        0
	                    MEAN	        1	     0.392	    18.199%	    71.495%	     0.000	        0
	        Misc Runtime Ops	        1	     0.282	    13.092%	    84.587%	    89.232	        0
	       DEPTHWISE_CONV_2D	       17	     0.251	    11.653%	    96.240%	     0.000	        0
	                     ADD	       10	     0.054	     2.507%	    98.747%	     0.000	        0
	                QUANTIZE	        1	     0.024	     1.114%	    99.861%	     0.000	        0
	              DEQUANTIZE	        2	     0.003	     0.139%	   100.000%	     0.000	        0

Timings (microseconds): count=472 first=564 curr=3809 min=564 max=3950 avg=2188.51 std=1625
Memory (bytes): count=0
72 nodes observed
</div></details> <details><summary>Ubuntu 18.04 x86_64 + XNNPACK enabled + 4 Threads EfficientNet-lite efficientnet-lite0-fp32.tflite Benchmark</summary><div>
Number of nodes executed: 5
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                DELEGATE	        2	     5.639	    95.706%	    95.706%	     0.000	        2
	         FULLY_CONNECTED	        1	     0.239	     4.056%	    99.762%	     0.000	        1
	         AVERAGE_POOL_2D	        1	     0.014	     0.238%	   100.000%	     0.000	        1
	                 RESHAPE	        1	     0.000	     0.000%	   100.000%	     0.000	        1

Timings (microseconds): count=168 first=5842 curr=5910 min=5749 max=6317 avg=5894.55 std=100
Memory (bytes): count=0
5 nodes observed
</div></details> <details><summary>Ubuntu 18.04 x86_64 + XNNPACK enabled + 4 Threads EfficientNet-lite efficientnet-lite4-fp32.tflite Benchmark</summary><div>
Number of nodes executed: 5
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                DELEGATE	        2	    33.720	    99.235%	    99.235%	     0.000	        2
	         FULLY_CONNECTED	        1	     0.231	     0.680%	    99.915%	     0.000	        1
	         AVERAGE_POOL_2D	        1	     0.029	     0.085%	   100.000%	     0.000	        1
	                 RESHAPE	        1	     0.000	     0.000%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=32459 curr=34867 min=31328 max=35730 avg=33983.5 std=1426
Memory (bytes): count=0
5 nodes observed
</div></details> <details><summary>Ubuntu 18.04 x86_64 + XNNPACK enabled + 4 Threads White-box-Cartoonization white_box_cartoonization_weight_quant.tflite Benchmark</summary><div>
Number of nodes executed: 47
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       18	 10731.842	    97.293%	    97.293%	     0.000	       18
	              LEAKY_RELU	       13	   236.792	     2.147%	    99.440%	     0.000	       13
	   TfLiteXNNPackDelegate	       10	    45.534	     0.413%	    99.853%	     0.000	       10
	         RESIZE_BILINEAR	        2	    11.237	     0.102%	    99.954%	     0.000	        2
	                     SUB	        3	     4.053	     0.037%	    99.991%	     0.000	        3
	                     DIV	        1	     0.977	     0.009%	   100.000%	     0.000	        1

Timings (microseconds): count=14 first=10866837 curr=11292015 min=10697744 max=12289882 avg=1.10305e+07 std=406791
Memory (bytes): count=0
47 nodes observed
</div></details> <details><summary>RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads edgetpu_deeplab_257_os16_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 91
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       49	    54.679	    58.810%	    58.810%	     0.000	       49
	                     SUB	        2	    11.043	    11.877%	    70.687%	     0.000	        2
	                     ADD	       16	     8.909	     9.582%	    80.269%	     0.000	       16
	                 ARG_MAX	        1	     7.184	     7.727%	    87.996%	     0.000	        1
	         RESIZE_BILINEAR	        3	     6.654	     7.157%	    95.153%	     0.000	        3
	       DEPTHWISE_CONV_2D	       13	     3.409	     3.667%	    98.819%	     0.000	       13
	                     MUL	        1	     0.548	     0.589%	    99.408%	     0.000	        1
	                QUANTIZE	        2	     0.328	     0.353%	    99.761%	     0.000	        2
	                 RESHAPE	        2	     0.162	     0.174%	    99.935%	     0.000	        2
	         AVERAGE_POOL_2D	        1	     0.043	     0.046%	    99.982%	     0.000	        1
	           CONCATENATION	        1	     0.017	     0.018%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=92752 curr=93058 min=92533 max=94478 avg=93021.2 std=274
Memory (bytes): count=0
91 nodes observed
</div></details> <details><summary>RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads edgetpu_deeplab_257_os32_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 91
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       49	    39.890	    52.335%	    52.335%	     0.000	       49
	                     SUB	        2	    11.043	    14.488%	    66.823%	     0.000	        2
	                     ADD	       16	     8.064	    10.580%	    77.403%	     0.000	       16
	                 ARG_MAX	        1	     7.011	     9.198%	    86.601%	     0.000	        1
	         RESIZE_BILINEAR	        3	     6.623	     8.689%	    95.290%	     0.000	        3
	       DEPTHWISE_CONV_2D	       13	     2.503	     3.284%	    98.574%	     0.000	       13
	                     MUL	        1	     0.544	     0.714%	    99.288%	     0.000	        1
	                QUANTIZE	        2	     0.313	     0.411%	    99.698%	     0.000	        2
	                 RESHAPE	        2	     0.178	     0.234%	    99.932%	     0.000	        2
	         AVERAGE_POOL_2D	        1	     0.041	     0.054%	    99.986%	     0.000	        1
	           CONCATENATION	        1	     0.011	     0.014%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=75517 curr=75558 min=75517 max=97776 avg=76262.5 std=3087
Memory (bytes): count=0
91 nodes observed
</div></details> <details><summary>RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads human_pose_estimation_3d_0001_256x448_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 165
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       69	   343.433	    78.638%	    78.638%	     0.000	       69
	                     PAD	       38	    51.637	    11.824%	    90.462%	     0.000	       38
	       DEPTHWISE_CONV_2D	       14	    15.306	     3.505%	    93.967%	     0.000	       14
	                     ADD	       15	    14.535	     3.328%	    97.295%	     0.000	       15
	                     ELU	        6	     5.071	     1.161%	    98.456%	     0.000	        6
	                QUANTIZE	       11	     4.481	     1.026%	    99.482%	     0.000	       11
	              DEQUANTIZE	        9	     1.851	     0.424%	    99.906%	     0.000	        9
	           CONCATENATION	        3	     0.410	     0.094%	   100.000%	     0.000	        3

Timings (microseconds): count=50 first=425038 curr=423469 min=421348 max=969226 avg=436808 std=77255
Memory (bytes): count=0
165 nodes observed
</div></details> <details><summary>RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + BlazeFace face_detection_front_128_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 79
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                     ADD	       16	     2.155	    34.120%	    34.120%	     0.000	       16
	                 CONV_2D	       21	     2.017	    31.935%	    66.054%	     0.000	       21
	                     PAD	       11	     1.014	    16.054%	    82.109%	     0.000	       11
	       DEPTHWISE_CONV_2D	       16	     0.765	    12.112%	    94.221%	     0.000	       16
	                QUANTIZE	        4	     0.186	     2.945%	    97.166%	     0.000	        4
	             MAX_POOL_2D	        3	     0.153	     2.422%	    99.588%	     0.000	        3
	              DEQUANTIZE	        2	     0.017	     0.269%	    99.857%	     0.000	        2
	           CONCATENATION	        2	     0.006	     0.095%	    99.952%	     0.000	        2
	                 RESHAPE	        4	     0.003	     0.047%	   100.000%	     0.000	        4

Timings (microseconds): count=144 first=6415 curr=6319 min=6245 max=6826 avg=6359.12 std=69
Memory (bytes): count=0
79 nodes observed
</div></details> <details><summary>RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + ssd_mobilenet_v2_mnasfpn_shared_box_predictor_320_coco_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 588
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	      119	   109.253	    52.671%	    52.671%	     0.000	      119
	       DEPTHWISE_CONV_2D	       61	    33.838	    16.313%	    68.984%	     0.000	       61
	TFLite_Detection_PostProcess	        1	    22.711	    10.949%	    79.933%	     0.000	        1
	                LOGISTIC	        1	    17.696	     8.531%	    88.465%	     0.000	        1
	                     ADD	       59	    12.300	     5.930%	    94.395%	     0.000	       59
	                 RESHAPE	        8	     4.175	     2.013%	    96.407%	     0.000	        8
	           CONCATENATION	        2	     3.416	     1.647%	    98.054%	     0.000	        2
	 RESIZE_NEAREST_NEIGHBOR	       12	     1.873	     0.903%	    98.957%	     0.000	       12
	             MAX_POOL_2D	       13	     1.363	     0.657%	    99.614%	     0.000	       13
	                     MUL	       16	     0.737	     0.355%	    99.970%	     0.000	       16
	              DEQUANTIZE	      296	     0.063	     0.030%	   100.000%	     0.000	      296

Timings (microseconds): count=50 first=346007 curr=196005 min=192539 max=715157 avg=207709 std=75605
Memory (bytes): count=0
588 nodes observed
</div></details> <details><summary>RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + object_detection_3d_chair_640x480_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 126
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       60	   146.537	    63.805%	    63.805%	     0.000	       60
	       DEPTHWISE_CONV_2D	       26	    45.022	    19.604%	    83.409%	     0.000	       26
	                     ADD	       23	    23.393	    10.186%	    93.595%	     0.000	       23
	          TRANSPOSE_CONV	        3	     9.930	     4.324%	    97.918%	     0.000	        3
	                QUANTIZE	        5	     3.103	     1.351%	    99.269%	     0.000	        5
	           CONCATENATION	        4	     1.541	     0.671%	    99.940%	     0.000	        4
	              DEQUANTIZE	        3	     0.117	     0.051%	    99.991%	     0.000	        3
	                     EXP	        1	     0.018	     0.008%	    99.999%	     0.000	        1
	                     NEG	        1	     0.002	     0.001%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=218224 curr=217773 min=217174 max=649357 avg=229732 std=62952
Memory (bytes): count=0
126 nodes observed
</div></details> <details><summary>RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + ssdlite_mobiledet_cpu_320x320_coco_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 288
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       96	    22.996	    33.342%	    33.342%	     0.000	       96
	              HARD_SWISH	       57	    11.452	    16.604%	    49.946%	     0.000	       57
	                     MUL	       19	     9.423	    13.662%	    63.608%	     0.000	       19
	         AVERAGE_POOL_2D	       19	     8.439	    12.236%	    75.843%	     0.000	       19
	       DEPTHWISE_CONV_2D	       35	     7.810	    11.324%	    87.167%	     0.000	       35
	TFLite_Detection_PostProcess	        1	     5.650	     8.192%	    95.359%	     0.000	        1
	                     ADD	       12	     1.690	     2.450%	    97.809%	     0.000	       12
	                QUANTIZE	       12	     0.879	     1.274%	    99.084%	     0.000	       12
	                LOGISTIC	       20	     0.277	     0.402%	    99.485%	     0.000	       20
	              DEQUANTIZE	        2	     0.234	     0.339%	    99.825%	     0.000	        2
	           CONCATENATION	        2	     0.079	     0.115%	    99.939%	     0.000	        2
	                 RESHAPE	       13	     0.042	     0.061%	   100.000%	     0.000	       13

Timings (microseconds): count=50 first=69091 curr=68590 min=68478 max=83971 avg=69105.3 std=2147
Memory (bytes): count=0
288 nodes observed
</div></details> <details><summary>RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + mobilenet_v2_pose_256_256_dm100_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 189
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       86	    51.819	    70.575%	    70.575%	     0.000	       86
	       DEPTHWISE_CONV_2D	       73	    18.207	    24.797%	    95.372%	     0.000	       73
	                     ADD	        8	     1.243	     1.693%	    97.065%	     0.000	        8
	                QUANTIZE	       13	     1.132	     1.542%	    98.607%	     0.000	       13
	           CONCATENATION	        7	     0.607	     0.827%	    99.433%	     0.000	        7
	         RESIZE_BILINEAR	        1	     0.354	     0.482%	    99.916%	     0.000	        1
	              DEQUANTIZE	        1	     0.062	     0.084%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=73752 curr=73430 min=73191 max=75764 avg=73524.8 std=485
Memory (bytes): count=0
189 nodes observed
</div></details> <details><summary>RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + mobilenet_v2_pose_368_432_dm100_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 189
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       86	   141.296	    69.289%	    69.289%	     0.000	       86
	       DEPTHWISE_CONV_2D	       73	    53.244	    26.110%	    95.399%	     0.000	       73
	                QUANTIZE	       13	     3.059	     1.500%	    96.899%	     0.000	       13
	                     ADD	        8	     3.014	     1.478%	    98.377%	     0.000	        8
	           CONCATENATION	        7	     2.302	     1.129%	    99.506%	     0.000	        7
	         RESIZE_BILINEAR	        1	     0.852	     0.418%	    99.924%	     0.000	        1
	              DEQUANTIZE	        1	     0.155	     0.076%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=189613 curr=579873 min=189125 max=579873 avg=204021 std=70304
Memory (bytes): count=0
189 nodes observed
</div></details> <details><summary>RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + mobilenet_v2_pose_256_256_dm050_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 189
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       86	    40.952	    71.786%	    71.786%	     0.000	       86
	       DEPTHWISE_CONV_2D	       73	    13.508	    23.679%	    95.465%	     0.000	       73
	                QUANTIZE	       13	     1.123	     1.969%	    97.434%	     0.000	       13
	                     ADD	        8	     0.710	     1.245%	    98.678%	     0.000	        8
	           CONCATENATION	        7	     0.498	     0.873%	    99.551%	     0.000	        7
	         RESIZE_BILINEAR	        1	     0.193	     0.338%	    99.890%	     0.000	        1
	              DEQUANTIZE	        1	     0.063	     0.110%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=57027 curr=57048 min=56773 max=58042 avg=57135 std=229
Memory (bytes): count=0
189 nodes observed
</div></details> <details><summary>RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + mobilenet_v2_pose_368_432_dm050_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 189
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       86	   104.618	    71.523%	    71.523%	     0.000	       86
	       DEPTHWISE_CONV_2D	       73	    34.527	    23.605%	    95.128%	     0.000	       73
	                QUANTIZE	       13	     2.572	     1.758%	    96.886%	     0.000	       13
	           CONCATENATION	        7	     2.257	     1.543%	    98.429%	     0.000	        7
	                     ADD	        8	     1.683	     1.151%	    99.580%	     0.000	        8
	         RESIZE_BILINEAR	        1	     0.460	     0.314%	    99.894%	     0.000	        1
	              DEQUANTIZE	        1	     0.155	     0.106%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=172545 curr=146065 min=145260 max=172545 avg=146362 std=3756
Memory (bytes): count=0
189 nodes observed
</div></details> <details><summary>RaspberryPi4 + Ubuntu 19.10 aarch64 + 4 Threads + yolov4_tiny_voc_416x416_integer_quant.tflite Benchmark</summary><div>
Number of nodes executed: 71
============================== Summary by node type ==============================
	             [Node type]	  [count]	  [avg ms]	    [avg %]	    [cdf %]	  [mem KB]	[times called]
	                 CONV_2D	       21	   149.092	    61.232%	    61.232%	     0.000	       21
	              LEAKY_RELU	       19	    77.644	    31.888%	    93.121%	     0.000	       19
	                     PAD	        2	     8.036	     3.300%	    96.421%	     0.000	        2
	                QUANTIZE	       10	     4.580	     1.881%	    98.302%	     0.000	       10
	           CONCATENATION	        7	     2.415	     0.992%	    99.294%	     0.000	        7
	             MAX_POOL_2D	        3	     0.982	     0.403%	    99.697%	     0.000	        3
	                   SPLIT	        3	     0.615	     0.253%	    99.950%	     0.000	        3
	              DEQUANTIZE	        2	     0.082	     0.034%	    99.984%	     0.000	        2
	 RESIZE_NEAREST_NEIGHBOR	        1	     0.032	     0.013%	    99.997%	     0.000	        1
	           STRIDED_SLICE	        1	     0.004	     0.002%	    99.998%	     0.000	        1
	                     MUL	        1	     0.004	     0.002%	   100.000%	     0.000	        1
	                   SHAPE	        1	     0.000	     0.000%	   100.000%	     0.000	        1

Timings (microseconds): count=50 first=233307 curr=233318 min=232446 max=364068 avg=243522 std=33354
Memory (bytes): count=0
71 nodes observed
</div></details>

4. Reference articles

  1. [deeplab] what's the parameters of the mobilenetv3 pretrained model?
  2. When you want to fine-tune DeepLab on other datasets, there are a few cases
  3. [deeplab] Training deeplab model with ADE20K dataset
  4. Running DeepLab on PASCAL VOC 2012 Semantic Segmentation Dataset
  5. Quantize DeepLab model for faster on-device inference
  6. https://github.com/tensorflow/models/blob/main/research/deeplab/g3doc/model_zoo.md
  7. https://github.com/tensorflow/models/blob/main/research/deeplab/g3doc/quantize.md
  8. the quantized form of Shape operation is not yet implemented
  9. Post-training quantization
  10. Converter command line reference
  11. Quantization-aware training
  12. Converting a .pb file to .meta in TF 1.3
  13. Minimal code to load a trained TensorFlow model from a checkpoint and export it with SavedModelBuilder
  14. How to restore Tensorflow model from .pb file in python?
  15. Error with tag-sets when serving model using tensorflow_model_server tool
  16. ValueError: No 'serving_default' in the SavedModel's SignatureDefs. Possible values are 'name_of_my_model'
  17. kerasのモデルをデプロイする手順 - Signature作成方法解説
  18. TensorFlow で学習したモデルのグラフを tf.train.import_meta_graph でロードする
  19. Tensorflowのグラフ操作 Part1
  20. Configure input_map when importing a tensorflow model from metagraph file
  21. TFLite Model Benchmark Tool
  22. How to install Ubuntu 19.10 aarch64 (64bit) on RaspberryPi4
  23. https://github.com/rwightman/posenet-python.git
  24. https://github.com/sayakpaul/Adventures-in-TensorFlow-Lite.git