Awesome
Official Implementation of the paper "Implicit Neural Representations for Variable Length Human Motion Generation" (ECCV 2022)
Bibtex
Please consider citing this work, if you find this code useful.
@article{cervantes2022implicit,
title={Implicit Neural Representations for Variable Length Human Motion Generation},
author={Cervantes, Pablo and Sekikawa, Yusuke and Sato, Ikuro and Shinoda, Koichi},
journal={arXiv preprint arXiv:2203.13694},
year={2022}
}
Installation
pip install -r requirements.txt
pip install torch==1.8.1+cu101 torchvision==0.9.1+cu101 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
To install Pytorch3D follow the instructions here.
For CUDA builds with versions earlier than CUDA 11, set
CUB_HOME
pip install "git+https://github.com/facebookresearch/pytorch3d.git@v0.3.0"
Data Preparation
Download datasets
Download evaluation models
Download SMPL model
Usage
Training
python3 ./ImplicitMotion/main.py
--path_config=/path/to/config-file
Before training you need to prepare a configuration file. Configurations for the experiments in the paper are provided here. Modifications for the following keyword arguments are necessary:
path_dataset: Path to dataset folder
path_results_base: Path to folder for saving checkpoints, etc. (arbitrary).
path_smpl: Path to SMPL file (.pkl)
Evaluation
python3 ./ImplicitMotion/test/test_metric.py
--path_results /path/to/results
--path_classifier /path/to/classifier
--variable_length_testing
--metrics
Visualization
python3 ./ImplicitMotion/test/test_metric.py
--path_results /path/to/results
--path_classifier /path/to/classifier
--variable_length_testing
--video
--num_videos 1
--video_length 60
License
This code is distributed under an MIT LICENSE.