Awesome
<img src="art/fake-logo.png" alt="syft.js logo" width="200" /><!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section --> <!-- ALL-CONTRIBUTORS-BADGE:END -->
Syft.js
Syft.js is the “web” part of the OpenMined's open-source ecosystem for federated learning, which currently spans across web, iOS, Android, and servers/IoT.
Syft.js has following core features:
- :hammer_and_wrench: Integration with PyGrid federated learning API.
- :gear: Training and inference of any PySyft model written in PyTorch or TensorFlow.
- :bust_in_silhouette: Allows all data to stay on the user's device.
- :lock: Support for secure multi-party computation and secure aggregation protocols using peer-to-peer WebRTC connections (in progress).
The library is built on top of TensorFlow.js.
There are a variety of additional privacy-preserving protections that may be applied, including differential privacy, muliti-party computation, and secure aggregation.
If you want to know how scalable federated systems are built, Towards Federated Learning at Scale is a fantastic introduction!
Installation
Note that syft.js needs Tensorflow.js library as peer dependency.
If you're using a package manager like NPM:
npm install --save @openmined/syft.js @tensorflow/tfjs-core
Or if Yarn is your cup of tea:
yarn add @openmined/syft.js @tensorflow/tfjs-core
If you're not using a package manager, you will be able to include Syft.js within a <script>
tag.
In this case library classes will be available under syft
global object.
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.2.5/dist/tf.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@openmined/syft.js@latest/dist/index.js"></script>
<script type="text/javascript">
// Create syft worker
const worker = syft.Syft({...});
...
</script>
Quick Start
As a developer, there are few steps to building your own secure federated learning system upon the OpenMined infrastructure:
- :robot: Develop ML model and training procedure (aka
Plan
in PySyft terminology) using PySyft. - :earth_americas: Host model and Plans on PyGrid, which will deal with all the federated learning components of your pipeline.
- :tada: Execute the training on the variety of end-user devices using the client library (syft.js, SwiftSyft, KotlinSyft, PySyft).
- :lock: Securely aggregate trained user models in PyGrid.
:notebook: The entire workflow and process is described in greater detail in the Web & Mobile Federated Learning project roadmap.
Syft.js provides minimalistic API to communicate with federated learning PyGrid endpoints and execute PySyft's Plans in a browser. The federated learning cycle implemented with syft.js would contain following steps:
- Register into training cycle on PyGrid.
- Download required model and Plans from PyGrid.
- Execute the Plan with given model parameters and local user's data.
- Submit difference between original and trained model parameters for aggregation.
This whole cycle can be expressed in the following code:
import * as tf from '@tensorflow/tfjs-core';
import { Syft } from '@openmined/syft.js';
const gridUrl = 'ws://pygrid.myserver.com:5000';
const modelName = 'my-model';
const modelVersion = '1.0.0';
// if the model is protected with authentication token (optional)
const authToken = '...';
const worker = new Syft({ gridUrl, authToken, verbose: true });
const job = await worker.newJob({ modelName, modelVersion });
job.start();
job.on('accepted', async ({ model, clientConfig }) => {
const batchSize = clientConfig.batch_size;
const lr = clientConfig.lr;
// Load data.
const batches = LOAD_DATA(batchSize);
// Load model parameters.
let modelParams = model.params.map((p) => p.clone());
// Main training loop.
for (let [data, labels] of batches) {
// NOTE: this is just one possible example.
// Plan name (e.g. 'training_plan'), its input arguments and outputs depends on FL configuration and actual Plan implementation.
let updatedModelParams = await job.plans['training_plan'].execute(
job.worker,
data,
labels,
batchSize,
lr,
...modelParams
);
// Use updated model params in the next iteration.
for (let i = 0; i < modelParams.length; i++) {
modelParams[i].dispose();
modelParams[i] = updatedModelParams[i];
}
}
// Calculate & send model diff.
const modelDiff = await model.createSerializedDiff(modelParams);
await job.report(modelDiff);
});
job.on('rejected', ({ timeout }) => {
// Handle the job rejection, e.g. re-try after timeout.
});
job.on('error', (err) => {
// Handle errors.
});
Note that syft.js doesn't handle user's data collection, data storage and loading.
API Documentation
See API Documentation for complete reference.
Running the Demo App
The “Hello World” syft.js demo is MNIST training example located in examples/mnist
folder.
It demonstrates how a simple neural net model created in PySyft can be trained in a browser
and the result of training averaged from multiple federated learning participants.
Running the demo is multi-stage and multi-component process (as the federated learning itself).
Below are example instructions that assume you
want to put everything under ~/fl-demo
folder.
Installation
It is recommended that you install python packages in separate virtualenv or conda environment, e.g.:
virtualenv -p python3 syft
source syft/bin/activate
or
conda create -n syft python=3.7
conda activate syft
Now, you will need to install following packages:
-
PySyft. Follow PySyft installation guide to install the latest
master
branch of PySyft. -
PyGrid. Follow PyGrid documentation to install the latest
dev
branch of PyGrid. NOTE: If you are running PyGrid with docker-compose, you'll need to build docker images from the latestdev
branch. -
Syft.js with MNIST demo. Check out the latest
master
branch of syft.js with MNIST demo app included:cd ~/fl-demo git clone https://github.com/OpenMined/syft.js cd syft.js npm install cd examples/mnist npm install
Seeding the Model & Plan
Syft.js connects to PyGrid to pick up the model and training Plan. For the demo to work, we need to populate that data into PyGrid.
Run PyGrid
There're two possible ways to start PyGrid:
- Run
./dev_server.sh
script in the PyGrid root folder. - Run
docker-compose up --build
in the PyGrid root folder.
Here we assume you don't need to change default PyGrid configuration and it listens
on the localhost:5000
. If you need to use different host/port,
PyGrid URL will need to be adjusted accordingly in further steps.
Create Model & Plan
After PyGrid is running, the next step is to create the model and training plan and host them in PyGrid. PySyft tutorials include MNIST example jupyter notebooks that guide you through this process.
Fire up jupyter notebook in PySyft root folder:
cd ~/fl-demo/PySyft
jupyter notebook --notebook-dir=$(pwd)
In the console, you should see URL you should open, or the browser will open automatically. After this, navigate to examples/tutorials/model-centric-fl
and run the first notebook. At this point, you can pull down the model and training plan with syft.js. However, if you'd like to see how to execute the plan using the PySyft FL worker, try running the second notebook.
PyGrid Clean-up
In case you need to reset PyGrid database to blank state, stop the process with Ctrl+C
and remove databaseGateway.db
file in PyGrid.
Or, if you used docker-compose, stop and re-start it using docker-compose up --force-recreate
command.
Starting the Demo
Finally, we got to the browser part of the demo:
cd ~/fl-demo/syft.js/examples/mnist
npm start
This should start development server and open localhost:8080
in the browser.
Assuming PyGrid URL, MNIST model name and version were not modified in previous steps, just
press “Start FL Worker”.
You should see following in dev console:
- Syft.js registers into training cycle on PyGrid and gets configuration, Plan, and the model.
- App loads MNIST dataset and executes the training plan with each data batch. Charts are updated during this process, and you should see the training loss going down and the accuracy going up.
- After the training is complete, model diff is submitted to PyGrid.
If “Keep making cycle requests” is checked, the whole cycle process is repeated until PyGrid tells worker that model training is complete.
Compatibility
PySyft
Syft.js has been tested with PySyft 0.2.7
PyGrid
Syft.js has been tested with the latest version of PyGrid on master
.
Tensorflow.js
Syft.js was tested with Tensorflow.js v1.2.5.
Browser Support
Syft.js was tested with Chrome and Firefox browsers.
Support
For support in using this library, please join the #lib_syft_js Slack channel. If you’d like to follow along with any code changes to the library, please join the #code_syftjs Slack channel. Click here to join our Slack community!
Contributing
Please check open issues as a starting point.
Bug reports and feature suggestions are welcomed as well.
The workflow is usual for github, the master
branch is considered stable:
- Star, fork, and clone the repo.
- Create new branch for your changes.
- Push changes in your fork.
- Submit a PR to OpenMined/syft.js.
- PR is reviewed and accepted.
Read the contribution guide as a good starting place.
Additionally, we welcome you to the slack for queries related to the library and contribution in general.
The Slack channel #lib_syft_js
is specific to syft.js development. See you there!
Contributors
These people were integral part of the efforts to bring syft.js to fruition and in its active development.
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tr> <td align="center"><a href="https://www.patrickcason.com"><img src="https://avatars1.githubusercontent.com/u/1297930?v=4" width="100px;" alt=""/><br /><sub><b>Patrick Cason</b></sub></a><br /><a href="#ideas-cereallarceny" title="Ideas, Planning, & Feedback">🤔</a> <a href="https://github.com/OpenMined/syft.js/commits?author=cereallarceny" title="Code">💻</a> <a href="#design-cereallarceny" title="Design">🎨</a> <a href="https://github.com/OpenMined/syft.js/commits?author=cereallarceny" title="Documentation">📖</a> <a href="#business-cereallarceny" title="Business development">💼</a></td> <td align="center"><a href="https://www.linkedin.com/in/vova-manannikov"><img src="https://avatars2.githubusercontent.com/u/12518480?v=4" width="100px;" alt=""/><br /><sub><b>Vova Manannikov</b></sub></a><br /><a href="https://github.com/OpenMined/syft.js/commits?author=vvmnnnkv" title="Code">💻</a> <a href="https://github.com/OpenMined/syft.js/commits?author=vvmnnnkv" title="Documentation">📖</a> <a href="https://github.com/OpenMined/syft.js/commits?author=vvmnnnkv" title="Tests">⚠️</a></td> <td align="center"><a href="http://nolski.rocks"><img src="https://avatars3.githubusercontent.com/u/2600677?v=4" width="100px;" alt=""/><br /><sub><b>Mike Nolan</b></sub></a><br /><a href="https://github.com/OpenMined/syft.js/commits?author=Nolski" title="Code">💻</a></td> <td align="center"><a href="http://ravikantsingh.com"><img src="https://avatars3.githubusercontent.com/u/40258150?v=4" width="100px;" alt=""/><br /><sub><b>Ravikant Singh</b></sub></a><br /><a href="https://github.com/OpenMined/syft.js/commits?author=IamRavikantSingh" title="Code">💻</a> <a href="https://github.com/OpenMined/syft.js/commits?author=IamRavikantSingh" title="Tests">⚠️</a> <a href="https://github.com/OpenMined/syft.js/commits?author=IamRavikantSingh" title="Documentation">📖</a></td> <td align="center"><a href="http://vkkhare.github.io"><img src="https://avatars1.githubusercontent.com/u/18126069?v=4" width="100px;" alt=""/><br /><sub><b>varun khare</b></sub></a><br /><a href="https://github.com/OpenMined/syft.js/commits?author=vkkhare" title="Code">💻</a></td> <td align="center"><a href="https://github.com/pedroespindula"><img src="https://avatars1.githubusercontent.com/u/38431219?v=4" width="100px;" alt=""/><br /><sub><b>Pedro Espíndula</b></sub></a><br /><a href="https://github.com/OpenMined/syft.js/commits?author=pedroespindula" title="Documentation">📖</a></td> <td align="center"><a href="https://benardi.github.io/myblog/"><img src="https://avatars0.githubusercontent.com/u/9937551?v=4" width="100px;" alt=""/><br /><sub><b>José Benardi de Souza Nunes</b></sub></a><br /><a href="https://github.com/OpenMined/syft.js/commits?author=Benardi" title="Tests">⚠️</a></td> </tr> <tr> <td align="center"><a href="http://www.linkedin.com/in/singh-taj"><img src="https://avatars1.githubusercontent.com/u/25232829?v=4" width="100px;" alt=""/><br /><sub><b>Tajinder Singh</b></sub></a><br /><a href="https://github.com/OpenMined/syft.js/commits?author=tsingh2k15" title="Code">💻</a></td> </tr> </table> <!-- markdownlint-enable --> <!-- prettier-ignore-end --> <!-- ALL-CONTRIBUTORS-LIST:END -->