Home

Awesome

Best Practice

Opencompass VLMEevalKit supports MMT-Bench now! We strongly recommend using VLMEevalKit for its useful features and ready-to-use LVLM implementations.

MMT-Bench

<p align="left"> <a href="#🚀-quick-start"><b>Quick Start</b></a> | <a href="https://mmt-bench.github.io/"><b>HomePage</b></a> | <a href="https://arxiv.org/abs/2404.16006"><b>arXiv</b></a> | <a href="https://huggingface.co/datasets/OpenGVLab/MMT-Bench"><b>Dataset</b></a> | <a href="#🖊️-citation"><b>Citation</b></a> <br> </p>

This repository is the official implementation of MMT-Bench.

MMT-Bench: A Multimodal MultiTask Benchmark for Comprehensive Evaluation of Large Vision-Language Models
Kaining Ying<sup>*</sup>, Fanqing Meng<sup>*</sup>, Jin Wang<sup>*</sup>, Zhiqian Li, Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang, Yuqi Lin, Shuo Liu, jiayi lei, Quanfeng Lu, Peng Gao, Runjian Chen, Peng Xu, Renrui Zhang, Haozhe Zhang, Yali Wang, Yu Qiao, Ping Luo, Kaipeng Zhang<sup>#</sup>, Wenqi Shao<sup>#</sup>
<sup>*</sup> KY, FM and JW contribute equally.
<sup>#</sup> WS (shaowenqi@pjlab.org.cn) and KZ (zhangkaipeng@pjlab.org.cn) are correponding authors.

💡 News

Introduction

MMT-Bench is a comprehensive benchmark designed to assess LVLMs across massive multimodal tasks requiring expert knowledge and deliberate visual recognition, localization, reasoning, and planning. MMT-Bench comprises 31, 325 meticulously curated multi-choice visual questions from various multimodal scenarios such as vehicle driving and embodied navigation, covering 32 core meta-tasks and 162 subtasks in multimodal understanding. overview

Evaluation Results Overview

🏆 Leaderboard

Val Set

RankModelScore
1InternVL2-40B66.9
2GPT4o65.4
3GeminiPro1-564.5
4GPT4V-20240409-HIGH64.3
4InternVL-Chat-V1-264.3
6Claude3-Opus62.5
7InternVL2-26B60.6
8LLavA-next-Yi-34B60.4
9InternVL2-8B60.0
10QwenVLMax59.7
11GeminiProVision59.1
12Mini-InternVL-Chat-4B-V1-558.4
13XComposer256.3
14Yi-VL-6B54.7
15Phi-3-Vision54.5
15TransCore-M54.5
17deepseek-vl-7B54.0
17Yi-VL-34B54.0
19LLavA-internlm2-7B53.4
19Monkey-Chat53.4
21LLavA-next-vicuna-13B52.4
22LLavA-v1.5-13B52.1
23sharegpt4v-7B51.6
24LLavA-v1.5-13B-xtuner50.7
25mPLUG-Owl250.5
26LLavA-next-vicuna-7B50.4
27LLavA-v1.5-7B49.6
28LLavA-v1.5-7B-xtuner49.3
29LLavA-internlm-7B48.3
30Qwen-Chat47.9
30sharecaptioner47.9

Full Set

RankModelScore
1GPT4o65.5
2InternVL-Chat-v1.2-34B63.4
3QwenVLMax62.4
4Qwen-VL-Plus62.3
5GeminiProVision61.6
6GPT4V_2024040961.1
7LLaVA-NEXT-34B60.8
8XComposer255.7
9BLIP254.8
10GPT4V_2023110654.7
11Yi-VL-34B54.2
12Monkey-Chat53.4
13DeepSeek-VL-7B53.2
14Yi-VL-6B53.2
15LLaVA-NEXT-13B53.0
16TransCore-M52.7
17QWen-VL-Chat52.5
18Claude3V_Haiku52.2
19XComposer52.1
20mPLUG-Owl252.0
21RBDash-v1-13B51.8
22LLaVA-v1.5-13B51.7
23CogVLM-Chat51.6
24ShareGPT4V-7B51.5
25LLaVA-NEXT-7B51.1
26LLaVA-v1.5-13B-XTuner51.1
27LLaVA-InternLM2-7B50.8
28LLaVA-v1.5-7B-XTuner50.2
29SharedCaptioner49.9
30LLaVA-InternLM-7B49.7
31LLaVA-v1.5-7B49.5
32LLaMA-Adapter-v2-7B40.4
33VisualGLM-6B38.6
34Frequency Guess31.7
35Random Guess28.5

🚀 Quick Start

Please refer to this to quick start.

💐 Acknowledgement

We expressed sincerely gratitude for the projects listed following:

🖊️ Citation

If you feel MMT-Bench useful in your project or research, please kindly use the following BibTeX entry to cite our paper. Thanks!

@misc{mmtbench,
    title={MMT-Bench: A Comprehensive Multimodal Benchmark for Evaluating Large Vision-Language Models Towards Multitask AGI}, 
    author={Kaining Ying and Fanqing Meng and Jin Wang and Zhiqian Li and Han Lin and Yue Yang and Hao Zhang and Wenbo Zhang and Yuqi Lin and Shuo Liu and Jiayi Lei and Quanfeng Lu and Runjian Chen and Peng Xu and Renrui Zhang and Haozhe Zhang and Peng Gao and Yali Wang and Yu Qiao and Ping Luo and Kaipeng Zhang and Wenqi Shao},
    year={2024},
    eprint={2404.16006},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}