Home

Awesome

<img width="60" alt="image" src="https://github.com/OpenGVLab/InternVL/assets/8529570/5aa4cda8-b453-40a0-9336-17012b430ae8"> Train InternViT-6B in MMSegmentation and MMDetection with DeepSpeed

<div align="center"> <img width="500" alt="image" src="https://github.com/user-attachments/assets/930e6814-8a9f-43e1-a284-118a5732daa4"> <br> </div>

This repository contains our customized mmcv/mmsegmentation/mmdetection code, integrated with DeepSpeed, which can be used for training large-scale object detection and semantic segmentation models.

What is InternVL?

[Paper] [Chat Demo] [Quick Start]

InternVL scales up the ViT to 6B parameters and aligns it with LLM.

It is the largest open-source vision/vision-language foundation model (14B) to date, achieving 32 state-of-the-art performances on a wide range of tasks such as visual perception, cross-modal retrieval, multimodal dialogue, etc.

PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC

Performance

Installation

[!Warning]

<div align="left"> <b> šŸšØ This codebase requires you to install a lower version of the environment (i.e., torch==1.12.0), which is different from our main repository's environment. </b> </div>

[!Note]

<div align="left"> <b> šŸ“ On 2024/10/24, the environment was successfully installed and verified by following the installation instructions below. </b> </div>

How to use?

The usage is basically consistent with that of common mmsegmentation and mmdetection.

Please enter the corresponding folder to check README.

Schedule

Citation

If you find this project useful in your research, please consider citing:

@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}
@article{chen2024far,
  title={How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
@article{gao2024mini,
  title={Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5\% Parameters and 90\% Performance},
  author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
  journal={arXiv preprint arXiv:2410.16261},
  year={2024}
}