Awesome
MaskAlign (CVPR 2023)
<p align="center"> <img src="figs/framework.png" alt="statistics" width="80%"/> </p>This is the official PyTorch repository for CVPR 2023 paper Stare at What You See: Masked Image Modeling without Reconstruction:
@article{xue2022stare,
title={Stare at What You See: Masked Image Modeling without Reconstruction},
author={Xue, Hongwei and Gao, Peng and Li, Hongyang and Qiao, Yu and Sun, Hao and Li, Houqiang and Luo, Jiebo},
journal={arXiv preprint arXiv:2211.08887},
year={2022}
}
-
This repo is a modification on the MAE repo. Installation and preparation follow that repo.
-
The teacher models in this repo are called from Huggingface. Please install transformers package by running: <br>
pip install transformers
.
Pre-training
To pre-train ViT-base (recommended default) with distributed training, run the following on 8 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 main_pretrain.py \
--batch_size 128 \
--model mae_vit_base_patch16 \
--blr 1.5e-4 \
--min_lr 1e-5 \
--data_path ${IMAGENET_DIR} \
--output_dir ${OUTPUT_DIR} \
--target_norm whiten \
--loss_type smoothl1 \
--drop_path 0.1 \
--head_type linear \
--epochs 200 \
--warmup_epochs 20 \
--mask_type attention \
--mask_ratio 0.7 \
--loss_weights top5 \
--fusion_type linear \
--teacher_model openai/clip-vit-base-patch16
- Here the effective batch size is 128 (
batch_size
per gpu) * 8 (gpus) = 1024. If memory or # gpus is limited, use--accum_iter
to maintain the effective batch size, which isbatch_size
(per gpu) *nodes
* 8 (gpus) *accum_iter
. blr
is the base learning rate. The actuallr
is computed by the linear scaling rule:lr
=blr
* effective batch size / 256.- This repo will automatically resume the checkpoints by keeping a "latest checkpoint".
To train ViT-Large, please set --model mae_vit_large_patch16
and --drop_path 0.2
. Currently, this repo supports three teacher models: --teacher_model ${TEACHER}
, where ${TEACHER} in openai/clip-vit-base-patch16, openai/clip-vit-large-patch14 and facebook/dino-vitb16
.
Fine-tuning
Get our pre-trained checkpoints from here.
To fine-tune ViT-base (recommended default) with distributed training, run the following on 8 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 main_finetune.py \
--epochs 100 \
--batch_size 128 \
--model vit_base_patch16 \
--blr 3e-4 \
--layer_decay 0.55 \
--weight_decay 0.05 \
--drop_path 0.2 \
--reprob 0.25 \
--mixup 0.8 \
--cutmix 1.0 \
--dist_eval \
--finetune ${PT_CHECKPOINT} \
--data_path ${IMAGENET_DIR} \
--output_dir ${OUTPUT_DIR}
- Here the effective batch size is 128 (
batch_size
per gpu) * 8 (gpus) = 1024. blr
is the base learning rate. The actuallr
is computed by the linear scaling rule:lr
=blr
* effective batch size / 256.
To fine-tune ViT-Large, please set --model vit_large_patch16 --epochs 50 --drop_path 0.4 --layer_decay 0.75 --blr 3e-4
.
Linear Probing
Run the following on 8 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 main_linprobe.py \
--epochs 90 \
--batch_size 2048 \
--model vit_base_patch16 \
--blr 0.025 \
--weight_decay 0.0 \
--dist_eval \
--finetune ${PT_CHECKPOINT} \
--data_path ${IMAGENET_DIR} \
--output_dir ${OUTPUT_DIR}
- Here the effective batch size is 2048 (
batch_size
per gpu) * 8 (gpus) = 16384. blr
is the base learning rate. The actuallr
is computed by the linear scaling rule:lr
=blr
* effective batch size / 256.