Home

Awesome

DriveAGI

This is "The One" project that OpenDriveLab is committed to contribute to the community, providing some thought and general picture of how to embrace foundation models into autonomous driving.

Table of Contents

NEWS

<details>

<font color="red">[ NEW❗️]</font> 2024/09/08 We released a mini version of OpenDV-YouTube, containing 25 hours of driving videos. Feel free to try the mini subset by following instructions at OpenDV-mini!

2024/05/28 We released our latest research, Vista, a generalizable driving world model. It's capable of predicting high-fidelity and long-horizon futures, executing multi-modal actions, and serving as a generalizable reward function to assess driving behaviors.

2024/03/24 OpenDV-YouTube Update: Full suite of toolkits for OpenDV-YouTube is now available, including data downloading and processing scripts, as well as language annotations. Please refer to OpenDV-YouTube.

2024/03/15 We released the complete video list of OpenDV-YouTube, a large-scale driving video dataset, for GenAD project. Data downloading and processing script, as well as language annotations, will be released next week. Stay tuned.

2024/01/24 We are excited to announce some update to our survey and would like to thank John Lambert, Klemens Esterle from the public community for their advice to improve the manuscript.

</details>

At A Glance

<details> Here are some key components to construct a large foundation model curated for an autonomous system.

overview

Below we would like to share the latest update from our team on the DriveData side. We will release the detail of the DriveEngine and the DriveAGI in the future.

</details>

Vista

<div id="top" align="center"> <p align="center"> <img src="assets/vista-teaser.gif" width="1000px" > </p> </div>

Simulated futures in a wide range of driving scenarios by Vista. Best viewed on demo page.

🌏 A Generalizable Driving World Model with High Fidelity and Versatile Controllability (NeurIPS 2024)

Quick facts:

@inproceedings{gao2024vista,
 title={Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability}, 
 author={Shenyuan Gao and Jiazhi Yang and Li Chen and Kashyap Chitta and Yihang Qiu and Andreas Geiger and Jun Zhang and Hongyang Li},
 booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
 year={2024}
}

@inproceedings{yang2024genad,
  title={{Generalized Predictive Model for Autonomous Driving}},
  author={Jiazhi Yang and Shenyuan Gao and Yihang Qiu and Li Chen and Tianyu Li and Bo Dai and Kashyap Chitta and Penghao Wu and Jia Zeng and Ping Luo and Jun Zhang and Andreas Geiger and Yu Qiao and Hongyang Li},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2024}
}

GenAD: OpenDV Dataset <a name="opendv"></a>

opendv

Examples of real-world driving scenarios in the OpenDV dataset, including urban, highway, rural scenes, etc.

Generalized Predictive Model for Autonomous Driving (CVPR 2024, Highlight)

Paper | Video | Poster | Slides

🎦 The Largest Driving Video dataset to date, containing more than 1700 hours of real-world driving videos and being 300 times larger than the widely used nuScenes dataset.

Quick facts:

@inproceedings{yang2024genad,
  title={Generalized Predictive Model for Autonomous Driving},
  author={Jiazhi Yang and Shenyuan Gao and Yihang Qiu and Li Chen and Tianyu Li and Bo Dai and Kashyap Chitta and Penghao Wu and Jia Zeng and Ping Luo and Jun Zhang and Andreas Geiger and Yu Qiao and Hongyang Li},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2024}
}

DriveLM

Introducing the First benchmark on Language Prompt for Driving.

Quick facts:

DriveData Survey

<details>

Abstract

With the continuous maturation and application of autonomous driving technology, a systematic examination of open-source autonomous driving datasets becomes instrumental in fostering the robust evolution of the industry ecosystem. In this survey, we provide a comprehensive analysis of more than 70 papers on the timeline, impact, challenges, and future trends in autonomous driving dataset.

Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future

@article{li2024_driving_dataset_survey,
 title = {Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future},
 author = {Hongyang Li and Yang Li and Huijie Wang and Jia Zeng and Huilin Xu and Pinlong Cai and Li Chen and Junchi Yan and Feng Xu and Lu Xiong and Jingdong Wang and Futang Zhu and Chunjing Xu and Tiancai Wang and Fei Xia and Beipeng Mu and Zhihui Peng and Dahua Lin and Yu Qiao},
 journal = {SCIENTIA SINICA Informationis},
 year = {2024},
 doi = {10.1360/SSI-2023-0313}
}
<!-- > [Hongyang Li](https://lihongyang.info/)<sup>1</sup>, Yang Li<sup>1</sup>, [Huijie Wang](https://faikit.github.io/)<sup>1</sup>, [Jia Zeng](https://scholar.google.com/citations?user=kYrUfMoAAAAJ)<sup>1</sup>, Pinlong Cai<sup>1</sup>, Dahua Lin<sup>1</sup>, Junchi Yan<sup>2</sup>, Feng Xu<sup>3</sup>, Lu Xiong<sup>4</sup>, Jingdong Wang<sup>5</sup>, Futang Zhu<sup>6</sup>, Kai Yan<sup>7</sup>, Chunjing Xu<sup>8</sup>, Tiancai Wang<sup>9</sup>, Beipeng Mu<sup>10</sup>, Shaoqing Ren<sup>11</sup>, Zhihui Peng<sup>12</sup>, Yu Qiao<sup>1</sup> > > <sup>1</sup> Shanghai AI Lab, <sup>2</sup> Shanghai Jiao Tong University, <sup>3</sup> Fudan University, <sup>4</sup> Tongji University, <sup>5</sup> Baidu, <sup>6</sup> BYD, <sup>7</sup> Changan, <sup>8</sup> Huawei, <sup>9</sup> Megvii Technology, <sup>10</sup> Meituan, <sup>11</sup> Nio Automotive, <sup>12</sup> Agibot > -->

overview

Current autonomous driving datasets can broadly be categorized into two generations since the 2010s. We define the Impact (y-axis) of a dataset based on sensor configuration, input modality, task category, data scale, ecosystem, etc.

overview

Related Work Collection

We present comprehensive paper collections, leaderboards, and challenges.(Click to expand)

<details> <summary>Challenges and Leaderboards</summary> <table> <capital></capital> <tr align="middle"> </tr> <tr align="middle"> <th >Title</th> <th >Host</th> <th >Year</th> <th >Task</th> <th >Entry</th> </tr> <tr align="middle"> <td rowspan=7 ><a href="https://opendrivelab.com/AD23Challenge.html" target="_blank" title="Autonomous Driving Challenge">Autonomous Driving Challenge</a></td> <td rowspan=7 > OpenDriveLab</td> <td rowspan=7 >CVPR2023</td> <td>Perception / OpenLane Topology</td> <td rowspan=7> 111 </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Perception / Online HD Map Construction</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Perception / 3D Occupancy Prediction</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Prediction & Planning / nuPlan Planning</td> </tr> <tr align="middle"> <td rowspan=23 ><a href="https://waymo.com/open/challenges/" target="_blank" title="Waymo Open Dataset Challenges">Waymo Open Dataset Challenges</a></td> <td rowspan=23 > Waymo</td> <td rowspan=8>CVPR2023</td> <td>Perception / 2D Video Panoptic Segmentation</td> <td rowspan=8> 35 </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Perception / Pose Estimation</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Prediction / Motion Prediction</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Prediction / Sim Agents</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td rowspan=8>CVPR2022</td> <td>Prediction / Motion Prediction</td> <td rowspan=8> 128 </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Prediction / Occupancy and Flow Prediction</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Perception / 3D Semantic Segmentation</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Perception / 3D Camera-only Detection</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td rowspan=7>CVPR2021</td> <td>Prediction / Motion Prediction</td> <td rowspan=7> 115 </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Prediction / Interaction Prediction</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Perception / Real-time 3D Detection</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Perception / Real-time 2D Detection</td> </tr> <tr align="middle"> <td rowspan=19 ><a href="https://www.argoverse.org/tasks.html" target="_blank" title="Argoverse Challenges">Argoverse Challenges</a></td> <td rowspan=19 > Argoverse</td> <td rowspan=8>CVPR2023</td> <td>Prediction / Multi-agent Forecasting</td> <td rowspan=8> 81 </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Perception & Prediction / Unified Sensorbased Detection, Tracking, and Forecasting</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Perception / LiDAR Scene Flow</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Prediction / 3D Occupancy Forecasting</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td rowspan=6>CVPR2022</td> <td>Perception / 3D Object Detection</td> <td rowspan=6> 81 </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Prediction / Motion Forecasting</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Perception / Stereo Depth Estimation</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td rowspan=5>CVPR2021</td> <td>Perception / Stereo Depth Estimation</td> <td rowspan=5> 368 </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Prediction / Motion Forecasting</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Perception / Streaming 2D Detection</td> </tr> <tr align="middle"> <td rowspan=5 ><a href="https://carlachallenge.org/" target="_blank" title="CARLA Autonomous Driving Challenge">CARLA Autonomous Driving Challenge</a></td> <td rowspan=5 > CARLA Team, Intel</td> <td rowspan=2 >2023</td> <td>Planning / CARLA AD Challenge 2.0</td> <td rowspan=2> - </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td rowspan=2 >NeurIPS2022</td> <td>Planning / CARLA AD Challenge 1.0</td> <td rowspan=2> 19 </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td rowspan=1 >NeurIPS2021</td> <td>Planning / CARLA AD Challenge 1.0</td> <td rowspan=1> - </td> </tr> <tr align="middle"> <td rowspan=7 ><a href="https://iacc.pazhoulab-huangpu.com/" target="_blank" title="粤港澳大湾区 (黄埔)国际算法算例大赛">粤港澳大湾区 (黄埔)国际算法算例大赛</a></td> <td rowspan=7> 琶洲实验室</td> <td rowspan=4>2023</td> <td>感知 / 跨场景单目深度估计</td> <td> - </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>感知 / 路侧毫米波雷达标定和目标跟踪</td> <td> - </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td rowspan=3>2022</td> <td>感知 / 路侧三维感知算法</td> <td> - </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>感知 / 街景图像店面招牌文字识别</td> <td> - </td> </tr> <tr align="middle"> <td rowspan=9 ><a href="https://driving-olympics.ai/" target="_blank" title="AI Driving Olympics">AI Driving Olympics</a></td> <td rowspan=9 > ETH Zurich, University of Montreal,Motional</td> <td> NeurIP2021 </td> <td rowspan=1>Perception / nuScenes Panoptic</td> <td> 11 </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td rowspan=7>ICRA2021</td> <td>Perception / nuScenes Detection</td> <td rowspan=7> 456 </td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Perception / nuScenes Tracking</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Prediction / nuScenes Prediction</td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td>Perception / nuScenes LiDAR Segmentation</td> </tr> <tr align="middle"> <td rowspan=1 ><a href="https://cg.cs.tsinghua.edu.cn/jittor/news/2021-1-22-13-14-comp/" target="_blank" title="计图 (Jittor)人工智能算法挑战赛">计图 (Jittor)人工智能算法挑战赛</a></td> <td rowspan=1 > 国家自然科学基金委信息科学部</td> <td> 2021 </td> <td rowspan=1>感知 / 交通标志检测</td> <td> 37 </td> </tr> <tr align="middle"> <td rowspan=1 ><a href="https://www.cvlibs.net/datasets/kitti/" target="_blank" title="KITTI Vision Benchmark Suite">KITTI Vision Benchmark Suite</a></td> <td rowspan=1 > University of Tübingen </td> <td> 2012 </td> <td rowspan=1>Perception / Stereo, Flow, Scene Flow, Depth, Odometry, Object, Tracking, Road, Semantics</td> <td> 5,610 </td> </tr> </table> <p align="right">(<a href="#top">back to top</a>)</p> </details> <details> <summary>Perception Datasets</summary> <table> <capital></capital> <tr align="middle"> </tr> <tr align="middle"> <th rowspan=3 colspan=1>Dataset</th> <th rowspan=3 >Year</td> <th align="middle" colspan=3 >Diversity</th> <th align="middle" colspan=3 >Sensor</th> <th rowspan=3 colspan=1>Annotation</th> <th rowspan=3 colspan=1>Paper</th> </tr> <tr align="middle"> </tr> <tr align="middle"> <th> Scenes</th> <th> Hours </th> <th> Region </th> <th> Camera</th> <th> Lidar </th> <th> Other </th> </tr> <tr align="middle"> <td><a href="https://www.cvlibs.net/datasets/kitti/" target="_blank" title="Homepage">KITTI</a></td> <td> 2012</td> <td> 50 </td> <td> 6 </td> <td> EU</td> <td> Font-view </td> <td> ✗</td> <td> GPS & IMU </td> <td>2D BBox & 3D BBox</td> <td><a href="https://www.cvlibs.net/publications/Geiger2012CVPR.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://www.cityscapes-dataset.com/" target="_blank" title="Homepage">Cityscapes</a></td> <td> 2016</td> <td> - </td> <td> - </td> <td> EU</td> <td> Font-view </td> <td> ✗ </td> <td> </td> <td>2D Seg</td> <td><a href="https://arxiv.org/abs/1604.01685" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="http://ww1.6d-vision.com/lostandfounddataset" target="_blank" title="Homepage">Lost and Found</a></td> <td> 2016</td> <td> 112 </td> <td> - </td> <td> -</td> <td> Font-view </td> <td> ✗ </td> <td> </td> <td>2D Seg</td> <td><a href="https://arxiv.org/abs/1609.04653" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://eval-vistas.mapillary.com/" target="_blank" title="Homepage">Mapillary</a></td> <td> 2016</td> <td> - </td> <td> - </td> <td> Global</td> <td> Street-view </td> <td> ✗ </td> <td> </td> <td>2D Seg</td> <td><a href="https://openaccess.thecvf.com/content_ICCV_2017/papers/Neuhold_The_Mapillary_Vistas_ICCV_2017_paper.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="http://sensors.ini.uzh.ch/news_page/DDD17.html" target="_blank" title="Homepage">DDD17</a></td> <td> 2017</td> <td> 36</td> <td> 12 </td> <td> EU</td> <td> Front-view </td> <td> ✗ </td> <td> GPS & CAN-bus & Event Camera</td> <td>-</td> <td><a href="https://arxiv.org/pdf/1711.01458.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/ApolloScapeAuto/dataset-api" target="_blank" title="Homepage">Apolloscape</a></td> <td> 2016</td> <td> 103</td> <td> 2.5 </td> <td> AS</td> <td> Front-view </td> <td> ✗ </td> <td> GPS & IMU </td> <td> 3D BBox & 2D Seg</td> <td><a href="https://arxiv.org/pdf/1803.06184.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/JinkyuKimUCB/BDD-X-dataset" target="_blank" title="Homepage">BDD-X</a></td> <td> 2018</td> <td> 6984</td> <td> 77 </td> <td> NA</td> <td> Front-view </td> <td> ✗ </td> <td> </td> <td>Language</td> <td><a href="https://arxiv.org/pdf/1807.11546.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://usa.honda-ri.com/hdd" target="_blank" title="Homepage">HDD</a></td> <td> 2018</td> <td> -</td> <td> 104 </td> <td> NA</td> <td> Front-view </td> <td> ✓ </td> <td> GPS & IMU & CAN-bus </td> <td>2D BBox </td> <td><a href="https://arxiv.org/pdf/1811.02307v1.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://idd.insaan.iiit.ac.in/dataset/details/" target="_blank" title="Homepage">IDD</a></td> <td> 2018</td> <td> 182</td> <td> - </td> <td> AS</td> <td> Front-view </td> <td> ✗ </td> <td> </td> <td>2D Seg </td> <td><a href="https://arxiv.org/pdf/1811.10200v1.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="http://semantic-kitti.org/" target="_blank" title="Homepage">SemanticKITTI</a></td> <td> 2019</td> <td> 50</td> <td> 6 </td> <td> EU </td> <td> ✗ </td> <td> ✓ </td> <td> </td> <td>3D Seg </td> <td><a href="https://arxiv.org/pdf/1904.01416.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/valeoai/WoodScape" target="_blank" title="Homepage">Woodscape</a></td> <td> 2019 </td> <td> -</td> <td> - </td> <td> Global</td> <td> 360° </td> <td> ✓ </td> <td> GPS & IMU & CAN-bus </td> <td>3D BBox & 2D Seg </td> <td><a href="https://arxiv.org/pdf/1905.01489.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://drivingstereo-dataset.github.io/" target="_blank" title="Homepage">DrivingStereo</a></td> <td> 2019 </td> <td> 42</td> <td> - </td> <td> AS </td> <td> Front-view </td> <td> ✓ </td> <td> </td> <td>-</td> <td><a href="https://ieeexplore.ieee.org/document/8954165/" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/Robotics-BUT/Brno-Urban-Dataset" target="_blank" title="Homepage">Brno-Urban</a></td> <td> 2019 </td> <td> 67</td> <td> 10 </td> <td> EU</td> <td> Front-view </td> <td> ✓ </td> <td> GPS & IMU & Infrared Camera </td> <td> -</td> <td><a href="https://arxiv.org/abs/1909.06897.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/I2RDL2/ASTAR-3D" target="_blank" title="Homepage">A*3D</a></td> <td> 2019 </td> <td> -</td> <td> 55 </td> <td> AS</td> <td> Front-view </td> <td> ✓ </td> <td> </td> <td> 3D BBox </td> <td><a href="https://arxiv.org/pdf/1909.07541v1.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/talk2car/Talk2Car" target="_blank" title="Homepage">Talk2Car</a></td> <td> 2019 </td> <td> 850</td> <td> 283.3 </td> <td> NA</td> <td> Front-view </td> <td> ✓ </td> <td> </td> <td>Language & 3D BBox </td> <td><a href="https://arxiv.org/pdf/1909.10838.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://data.vision.ee.ethz.ch/arunv/personal/talk2nav.html" target="_blank" title="Homepage">Talk2Nav</a></td> <td> 2019 </td> <td> 10714</td> <td> - </td> <td> Sim</td> <td> 360° </td> <td> ✗ </td> <td> </td> <td>Language </td> <td><a href="https://arxiv.org/abs/1910.02029.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/aras62/PIEPredict" target="_blank" title="Homepage">PIE</a></td> <td> 2019 </td> <td> -</td> <td> 6 </td> <td> NA</td> <td> Front-view </td> <td> ✗ </td> <td> </td> <td>2D BBox </td> <td><a href="https://openaccess.thecvf.com/content_ICCV_2019/papers/Rasouli_PIE_A_Large-Scale_Dataset_and_Models_for_Pedestrian_Intention_Estimation_ICCV_2019_paper.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/weisongwen/UrbanLoco" target="_blank" title="Homepage">UrbanLoco</a></td> <td> 2019 </td> <td> 13</td> <td> -</td> <td>AS & NA</td> <td> 360° </td> <td> ✓ </td> <td> IMU </td> <td>- </td> <td><a href="https://arxiv.org/abs/1912.09513.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://usa.honda-ri.com/titan" target="_blank" title="Homepage">TITAN</a></td> <td> 2019 </td> <td> 700</td> <td> - </td> <td> AS</td> <td> Front-view </td> <td> ✗ </td> <td> </td> <td>2D BBox </td> <td><a href="https://arxiv.org/pdf/2003.13886.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://usa.honda-ri.com/H3D" target="_blank" title="Homepage">H3D </a></td> <td> 2019 </td> <td> 160 </td> <td> 0.77 </td> <td> NA</td> <td> Front-view </td> <td> ✓ </td> <td> GPS & IMU </td> <td>- </td> <td><a href="https://arxiv.org/abs/1903.01568.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://www.a2d2.audi/a2d2/en/download.html" target="_blank" title="Homepage">A2D2</a></td> <td> 2020 </td> <td> - </td> <td> 5.6 </td> <td> EU</td> <td> 360° </td> <td> ✓ </td> <td> GPS & IMU & CAN-bus</td> <td>3D BBox & 2D Seg </td> <td><a href="https://arxiv.org/pdf/2004.06320.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/valeoai/carrada_dataset" target="_blank" title="Homepage">CARRADA</a></td> <td> 2020 </td> <td> 30 </td> <td> 0.3 </td> <td> NA</td> <td> Front-view </td> <td> ✗ </td> <td> Radar</td> <td>3D BBox </td> <td><a href="https://arxiv.org/abs/2005.01456.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://data.mendeley.com/datasets/766ygrbt8y/3" target="_blank" title="Homepage">DAWN</a></td> <td> 2019 </td> <td> - </td> <td> - </td> <td> Global</td> <td> Front-view </td> <td> ✗ </td> <td> </td> <td>2D BBox </td> <td><a href="https://arxiv.org/abs/2008.05402.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/pmwenzel/4seasons-dataset" target="_blank" title="Homepage">4Seasons</a></td> <td> 2019</td> <td> - </td> <td> - </td> <td> -</td> <td> Front-view </td> <td> ✗ </td> <td> GPS & IMU</td> <td>- </td> <td><a href="https://arxiv.org/abs/2009.06364.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/sauradip/night_image_semantic_segmentation#Urban%20Night%20Driving%20Dataset" target="_blank" title="Homepage">UNDD</a></td> <td> 2019 </td> <td> - </td> <td> - </td> <td> -</td> <td> Front-view </td> <td> ✗ </td> <td> </td> <td> 2D Seg </td> <td><a href="https://ieeexplore.ieee.org/document/8803299 " target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="http://www.poss.pku.edu.cn/" target="_blank" title="Homepage">SemanticPOSS</a></td> <td> 2020 </td> <td> - </td> <td> - </td> <td> AS</td> <td> ✗ </td> <td> ✓ </td> <td> GPS & IMU </td> <td>3D Seg </td> <td><a href="https://arxiv.org/abs/2002.09147.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/WeikaiTan/Toronto-3D" target="_blank" title="Homepage">Toronto-3D</a></td> <td> 2020 </td> <td> 4 </td> <td> - </td> <td> NA</td> <td> ✗ </td> <td> ✓ </td> <td> </td> <td>3D Seg </td> <td><a href="https://openaccess.thecvf.com/content_CVPRW_2020/papers/w11/Tan_Toronto-3D_A_Large-Scale_Mobile_LiDAR_Dataset_for_Semantic_Segmentation_of_CVPRW_2020_paper.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/gurkirt/road-dataset" target="_blank" title="Homepage">ROAD</a></td> <td> 2021 </td> <td> 22 </td> <td> - </td> <td> EU</td> <td>Front-view </td> <td> ✗ </td> <td> </td> <td>2D BBox & Topology </td> <td><a href="https://arxiv.org/abs/2102.11585.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/bassam-motional/Reasonable-Crowd" target="_blank" title="Homepage">Reasonable Crowd</a></td> <td> 2021 </td> <td> - </td> <td> - </td> <td> Sim</td> <td> Front-view </td> <td> ✗ </td> <td> </td> <td>Language </td> <td><a href="https://arxiv.org/abs/2107.13507.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://gamma.umd.edu/researchdirections/autonomousdriving/meteor/" target="_blank" title="Homepage">METEOR</a></td> <td> 2021 </td> <td> 1250 </td> <td> 20.9 </td> <td> AS</td> <td> Front-view </td> <td> ✗ </td> <td> GPS </td> <td>Language </td> <td><a href="https://arxiv.org/abs/2109.07648.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/scaleapi/pandaset-devkit" target="_blank" title="Homepage">PandaSet</a></td> <td> 2021 </td> <td> 179 </td> <td> - </td> <td> NA</td> <td> 360° </td> <td> ✓ </td> <td> GPS & IMU </td> <td>3D BBox </td> <td><a href="https://arxiv.org/abs/2112.12610.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/ENSTA-U2IS/MUAD-Dataset" target="_blank" title="Homepage">MUAD</a></td> <td> 2022 </td> <td> - </td> <td> - </td> <td> Sim </td> <td> 360° </td> <td> ✓ </td> <td> </td> <td>2D Seg& 2D BBox </td> <td><a href="https://arxiv.org/abs/2203.01437.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://mucar3.de/iros2022-ppniv-tas-nir/" target="_blank" title="Homepage">TAS-NIR</a></td> <td> 2022 </td> <td> - </td> <td> - </td> <td> - </td> <td> Front-view </td> <td> ✗ </td> <td>Infrared Camera </td> <td>2D Seg</td> <td><a href="https://arxiv.org/abs/2212.09368.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/LiDAR-Perception/LiDAR-CS" target="_blank" title="Homepage">LiDAR-CS</a></td> <td> 2022 </td> <td> 6 </td> <td> - </td> <td> Sim </td> <td> ✗ </td> <td> ✓ </td> <td> </td> <td>3D BBox </td> <td><a href="https://arxiv.org/abs/2301.12515.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://wilddash.cc/" target="_blank" title="Homepage">WildDash </a></td> <td> 2022 </td> <td> - </td> <td> - </td> <td> - </td> <td> Front-view </td> <td> ✗ </td> <td> </td> <td>2D Seg </td> <td><a href="https://openaccess.thecvf.com/content_ECCV_2018/papers/Oliver_Zendel_WildDash_-_Creating_ECCV_2018_paper.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/OpenDriveLab/OpenScene" target="_blank" title="Homepage">OpenScene</a></td> <td> 2023 </td> <td> 1000 </td> <td> 5.5 </td> <td> AS & NA</td> <td> 360° </td> <td> ✗ </td> <td> </td> <td>3D Occ </td> <td><a href="https://arxiv.org/abs/2211.15654.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://zod.zenseact.com/" target="_blank" title="Homepage">ZOD</a></td> <td> 2023 </td> <td> 1473 </td> <td> 8.2 </td> <td> EU </td> <td> 360° </td> <td> ✓ </td> <td> GPS & IMU & CAN-bus </td> <td>3D BBox & 2D Seg </td> <td><a href="https://arxiv.org/abs/2305.02008" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://www.nuscenes.org/" target="_blank" title="Homepage">nuScenes</a></td> <td> 2019 </td> <td> 1000 </td> <td> 5.5 </td> <td> AS & NA </td> <td> 360° </td> <td> ✓ </td> <td> GPS & CAN-bus & Radar & HDMap</td> <td>3D BBox & 3D Seg </td> <td><a href="https://arxiv.org/pdf/1903.11027.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://www.argoverse.org/av1.html" target="_blank" title="Homepage">Argoverse V1</a></td> <td> 2019 </td> <td> 324k </td> <td>320 </td> <td> NA </td> <td> 360° </td> <td> ✓ </td> <td> HDMap</td> <td>3D BBox & 3D Seg </td> <td><a href="https://arxiv.org/pdf/1911.02620.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/waymo-research/waymo-open-dataset" target="_blank" title="Homepage">Waymo</a></td> <td> 2019 </td> <td> 1000 </td> <td>6.4 </td> <td> NA </td> <td> 360° </td> <td> ✓ </td> <td> </td> <td>2D BBox & 3D BBox </td> <td><a href="https://arxiv.org/abs/1912.04838.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/autonomousvision/kitti360Scripts" target="_blank" title="Homepage">KITTI-360</a></td> <td> 2020 </td> <td> 366 </td> <td> 2.5 </td> <td> EU </td> <td> 360° </td> <td> ✓ </td> <td> </td> <td>3D BBox & 3D Seg </td> <td><a href="https://arxiv.org/abs/2109.13410.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://once-for-auto-driving.github.io/index.html" target="_blank" title="Homepage">ONCE</a></td> <td> 2021 </td> <td> - </td> <td> 144 </td> <td> AS </td> <td> 360° </td> <td> ✓ </td> <td> </td> <td>3D BBox </td> <td><a href="https://arxiv.org/pdf/2106.11037.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://www.nuscenes.org/nuplan" target="_blank" title="Homepage">nuPlan </a></td> <td> 2021 </td> <td> - </td> <td> 120 </td> <td> AS & NA </td> <td> 360° </td> <td> ✓ </td> <td> </td> <td>3D BBox </td> <td><a href="https://arxiv.org/abs/2106.11810.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://www.argoverse.org/av2.html" target="_blank" title="Homepage">Argoverse V2</a></td> <td> 2022 </td> <td> 1000 </td> <td> 4 </td> <td> NA </td> <td> 360° </td> <td> ✓ </td> <td> HDMap</td> <td>3D BBox </td> <td><a href="https://arxiv.org/pdf/2301.00493.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/OpenDriveLab/DriveLM" target="_blank" title="Homepage">DriveLM </a></td> <td> 2023 </td> <td> 1000 </td> <td> 5.5 </td> <td> AS & NA </td> <td> 360° </td> <td> ✗ </td> <td> </td> <td>Language </td> <td><a href="https://github.com/OpenDriveLab/DriveLM" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <tr align="middle"> </table> </table> <p align="right">(<a href="#top">back to top</a>)</p> </details> <details> <summary>Mapping Datasets</summary> <table> <capital></capital> <tr align="middle"> </tr> <tr align="middle"> <th rowspan=3 colspan=1>Dataset</td> <th rowspan=3 >Year</td> <th align="middle" colspan=2 >Diversity</th> <th align="middle" colspan=2 >Sensor</th> <th align="middle" colspan=4 >Annotation</th> <th rowspan=3 colspan=1>Paper</th> </tr> <tr align="middle"> </tr> <tr align="middle"> <th> Scenes</th> <th> Frames </th> <th> Camera</th> <th> Lidar </th> <th> Type </th> <th> Space </th> <th> Inst. </th> <th> Track </th> </tr> <tr align="middle"> <td><a href="https://www.cvlibs.net/datasets/kitti/" target="_blank" title="Homepage">Caltech Lanes</a></td> <td> 2008</td> <td>4</td> <td> 1224/1224 </td> <td> </td> <td> ✗</td> <td> </td> <td> PV </td> <td>✓</td> <td>✗</td> <td><a href="https://www.cvlibs.net/datasets/kitti/" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/SeokjuLee/VPGNet" target="_blank" title="Homepage">VPG</a></td> <td> 2017</td> <td>-</td> <td> 20K/20K </td> <td> </td> <td> ✗</td> <td> </td> <td> PV </td> <td>✗</td> <td>-</td> <td><a href="https://openaccess.thecvf.com/content_iccv_2017/html/Lee_VPGNet_Vanishing_Point_ICCV_2017_paper.html" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/TuSimple/tusimple-benchmark" target="_blank" title="Homepage">TUsimple</a></td> <td> 2017</td> <td>6.4K</td> <td> 6.4K/128K </td> <td> </td> <td> ✗</td> <td> </td> <td> PV </td> <td>✓</td> <td>✗</td> <td><a href="https://github.com/TuSimple/tusimple-benchmark" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://xingangpan.github.io/projects/CULane.html" target="_blank" title="Homepage">CULane</a></td> <td> 2018</td> <td>-</td> <td> 133K/133K </td> <td> </td> <td> ✗</td> <td> </td> <td> PV </td> <td>✓</td> <td>-</td> <td><a href="https://arxiv.org/abs/1712.06080.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/ApolloScapeAuto/dataset-api" target="_blank" title="Homepage">ApolloScape</a></td> <td> 2018 </td> <td>235</td> <td>115K/115K</td> <td> </td> <td> ✓</td> <td> </td> <td> PV </td> <td>✗</td> <td>✗</td> <td><a href="https://arxiv.org/abs/1803.06184.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://unsupervised-llamas.com/llamas/" target="_blank" title="Homepage">LLAMAS</a></td> <td> 2019</td> <td>14</td> <td> 79K/100K </td> <td> Front-view Image </td> <td> ✗</td> <td> Laneline </td> <td> PV </td> <td>✓</td> <td>✗</td> <td><a href="https://ieeexplore.ieee.org/document/9022318" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/yuliangguo/Pytorch_Generalized_3D_Lane_Detection" target="_blank" title="Homepage">3D Synthetic</a></td> <td> 2020</td> <td>-</td> <td> 10K/10K </td> <td> </td> <td> ✗</td> <td> </td> <td> PV </td> <td>✓</td> <td>-</td> <td><a href="https://arxiv.org/abs/2003.10656.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/SoulmateB/CurveLanes" target="_blank" title="Homepage">CurveLanes</a></td> <td> 2020</td> <td>-</td> <td> 150K/150K </td> <td> </td> <td> ✗</td> <td> </td> <td> PV </td> <td>✓</td> <td>-</td> <td><a href="https://arxiv.org/abs/2007.12147.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/yujun0-0/mma-net" target="_blank" title="Homepage">VIL-100</a></td> <td> 2021 </td> <td>100 </td> <td> 10K/10K </td> <td> </td> <td> ✗</td> <td> </td> <td> PV </td> <td>✓</td> <td>✗</td> <td><a href="https://arxiv.org/abs/2108.08482.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/OpenDriveLab/OpenLane" target="_blank" title="Homepage">OpenLane-V1</a></td> <td> 2022</td> <td>1K </td> <td> 200K/200K </td> <td> </td> <td> ✗</td> <td> </td> <td> 3D </td> <td>✓</td> <td>✓</td> <td><a href="https://arxiv.org/abs/2203.11089.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://once-3dlanes.github.io/" target="_blank" title="Homepage">ONCE-3DLane</a></td> <td> 2022 </td> <td>-</td> <td> 211K/211K </td> <td> </td> <td> ✗</td> <td> </td> <td> 3D </td> <td>✓</td> <td>-</td> <td><a href="https://openaccess.thecvf.com/content/CVPR2022/papers/Yan_ONCE-3DLanes_Building_Monocular_3D_Lane_Detection_CVPR_2022_paper.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> <td><a href="https://github.com/OpenDriveLab/OpenLane-V2" target="_blank" title="Homepage">OpenLane-V2</a></td> <td> 2023 </td> <td>2K </td> <td>72K/72K </td> <td> Multi-view Image </td> <td> ✗</td> <td> Lane Centerline, Lane Segment </td> <td> 3D </td> <td>✓</td> <td>✓</td> <td><a href="https://arxiv.org/abs/2304.10440.pdf" target="_blank" title="Homepage">Link</a></td> </tr> <tr align="middle"> </tr> </table> </details> <details> <summary>Prediction and Planning Datasets</summary> <table> <capital></capital> <tr align="middle"> </tr> <tr align="middle"> <th rowspan=1 colspan=1>Subtask</th> <th rowspan=1 > Input</th> <th colspan=1 >Output</th> <th colspan=1 >Evaluation</th> <th colspan=1 >Dataset</th> </tr> <tr align="middle"> <td rowspan=9 > Motion Prediction</td> <td rowspan=9> Surrounding Traffic States </td> <td rowspan=9 > Spatiotemporal Trajectories of Single/Multiple Vehicle(s) </td> <td rowspan=9 > Displacement Error </td> <td><a href="https://www.argoverse.org" target="_blank" title="Homepage">Argoverse</a></td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td><a href="https://www.nuscenes.org/" target="_blank" title="Homepage">nuScenes</a></td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td><a href="https://github.com/waymo-research/waymo-open-dataset" target="_blank" title="Homepage">Waymo</a></td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td><a href="https://github.com/interaction-dataset/interaction-dataset" target="_blank" title="Homepage">Interaction</a></td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td><a href="https://tum-cps.pages.gitlab.lrz.de/mona-dataset/" target="_blank" title="Homepage">MONA</a></td> </tr> <tr align="middle"> <td rowspan=7 > Trajectory Planning</td> <td rowspan=7> Motion States for Ego Vehicles, Scenario Cognition and Prediction </td> <td rowspan=7 > Trajectories for Ego Vehicles </td> <td rowspan=7 > Displacement Error, Safety, Compliance, Comfort </td> <td><a href="https://www.nuscenes.org/nuplan" target="_blank" title="Homepage">nuPlan </a></td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td><a href="https://carlachallenge.org/" target="_blank" title="Homepage"> CARLA </a></td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td><a href="https://github.com/metadriverse/metadrive" target="_blank" title="Homepage">MetaDrive</a></td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td><a href="https://github.com/ApolloScapeAuto/dataset-api" target="_blank" title="Homepage">Apollo</a></td> </tr> <tr align="middle"> <td rowspan=9 > Path Planning</td> <td rowspan=9> Maps for Road Network</td> <td rowspan=9 > Routes Connecting to Nodes and Links </td> <td rowspan=9 > Efficiency, Energy Conservation </td> <td><a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4653466" target="_blank" title="Homepage">OpenStreetMap </a></td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td><a href="https://github.com/bstabler/TransportationNetworks" target="_blank" title="Homepage">Transportation Networks </a></td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td><a href="https://github.com/asu-trans-ai-lab/DTALite" target="_blank" title="Homepage"> DTAlite </a></td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td><a href="https://dot.ca.gov/programs/traffic-operations/mpr/pems-source" target="_blank" title="Homepage">PeMS </a></td> </tr> <tr align="middle"> </tr> <tr align="middle"> <td><a href="https://github.com/toddwschneider/nyc-taxi-data" target="_blank" title="Homepage">New York City Taxi Data </a></td> </tr> </table> </details> </details>

OpenScene

<details>

The Largest up-to-date 3D Occupancy Forecasting dataset for visual pre-training.

Quick facts:

</details>

OpenLane-V2 Update

<details>

Flourishing OpenLane-V2 with Standard Definition (SD) Map and Map Elements.

Quick facts:

</details>