Awesome
XoFTR: Cross-modal Feature Matching Transformer
Paper (arXiv) | Paper (CVF)
<br/>This is Pytorch implementation of XoFTR: Cross-modal Feature Matching Transformer CVPR 2024 Image Matching Workshop paper.
XoFTR is a cross-modal cross-view method for local feature matching between thermal infrared (TIR) and visible images.
<!-- ![teaser](assets/figures/teaser.png) --> <p align="center"> <img src="assets/figures/teaser.png" alt="teaser" width="500"/> </p>Colab demo
To run XoFTR with custom image pairs without configuring your own GPU environment, you can use the Colab demo:
Installation
conda env create -f environment.yaml
conda activate xoftr
Download links for
- Pretrained models weights: Two versions available, trained at 640 and 840 resolutions.
- METU-VisTIR dataset
METU-VisTIR Dataset
<!-- ![dataset](assets/figures/dataset.png) --> <p align="center"> <img src="assets/figures/dataset.png" alt="dataset" width="600"/> </p>This dataset includes thermal and visible images captured across six diverse scenes with ground-truth camera poses. Four of the scenes encompass images captured under both cloudy and sunny conditions, while the remaining two scenes exclusively feature cloudy conditions. Since the cameras are auto-focus, there may be result in slight imperfections in the ground truth camera parameters. For more information about the dataset, please refer to our paper.
License of the dataset:
The METU-VisTIR dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).
Data format
The dataset is organized into folders according to scenarios. The organization format is as follows:
METU-VisTIR/
├── index/
│ ├── scene_info_test/
│ │ ├── cloudy_cloudy_scene_1.npz # scene info with test pairs
│ │ └── ...
│ ├── scene_info_val/
│ │ ├── cloudy_cloudy_scene_1.npz # scene info with val pairs
│ │ └── ...
│ └── val_test_list/
│ ├── test_list.txt # test scenes list
│ └── val_list.txt # val scenes list
├── cloudy/ # cloudy scenes
│ ├── scene_1/
│ │ ├── thermal/
│ │ │ └── images/ # thermal images
│ │ └── visible/
│ │ └── images/ # visible images
│ └── ...
└── sunny/ # sunny scenes
└── ...
cloudy_cloudy_scene_*.npz and cloudy_sunny_scene_*.npz files contain GT camera poses and image pairs
Runing XoFTR
Demo to match image pairs with XoFTR
A <span style="color:red">demo notebook</span> for XoFTR on a single pair of images is given in notebooks/xoftr_demo.ipynb.
Reproduce the testing results for relative pose estimation
You need to download METU-VisTIR dataset. After downloading, unzip the required files. Then, symlinks need to be created for the data
folder.
unzip downloaded-file.zip
# set up symlinks
ln -s /path/to/METU_VisTIR/ /path/to/XoFTR/data/
conda activate xoftr
python test_relative_pose.py xoftr --ckpt weights/weights_xoftr_640.ckpt
# with visualization
python test_relative_pose.py xoftr --ckpt weights/weights_xoftr_640.ckpt --save_figs
The results and figures are saved to results_relative_pose/
.
Training
See Training XoFTR for more details.
Citation
If you find this code useful for your research, please use the following BibTeX entry.
@inproceedings{tuzcuouglu2024xoftr,
title={XoFTR: Cross-modal Feature Matching Transformer},
author={Tuzcuo{\u{g}}lu, {\"O}nder and K{\"o}ksal, Aybora and Sofu, Bu{\u{g}}ra and Kalkan, Sinan and Alatan, A Aydin},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={4275--4286},
year={2024}
}
Acknowledgement
This code is derived from LoFTR. We are grateful to the authors for their contribution of the source code.