Home

Awesome

Category-Level 6D Object Pose Estimation in the Wild: A Semi-Supervised Learning Approach and A New Dataset

This repository contains the official implementation for the following paper:

Category-Level 6D Object Pose Estimation in the Wild: A Semi-Supervised Learning Approach and A New Dataset <br/> Yang Fu, Xiaolong Wang <br/> Project Page | Paper (arXiv)

NeurIPS 2022

approach

Progress

Requirements

Environments

Data

Download and unzip Wild6D data from Google Drive or OneDrive (Testing set is only needed for evaluation). We highly recommend you to download Wild6D data via gdown. For example, you can download the testing data with the following command.

gdown --id 1AWLX6V0kAyiTFdkGg4FrkEaQ5jbUVtaj

We also provide a script that allows downloading all dataset files at once. In order to do so, execute the download script,

bash tools/download.sh

Unzip and organize these files in $ROOT/data as the following structure:

data
├── Wild6D
│   ├── bottle
│   ├── bowl
│   ├── camera
│   ├── laptop
│   ├── mug
│   └── test_set
│       ├──pkl_annotations
│       │   ├── bottle
│       │   ├── bowl
│       │       ...
│       ├── bottle
│       ├── bowl
│           ...
├── meshes

Evaluation

Contact

Contact Yang Fu if you have any further questions. This repository is for academic research use only.

Acknowledgments

Our codebase builds heavily on NOCS and Shape-Prior. Thanks for open-sourcing!.

Citation

@inproceedings{fucategory,
  title={Category-Level 6D Object Pose Estimation in the Wild: A Semi-Supervised Learning Approach and A New Dataset},
  author={Fu, Yang and Wang, Xiaolong},
  booktitle={Advances in Neural Information Processing Systems},
  year={2022}
}