Home

Awesome

A Survey of Surveys (NLP & ML)

In this document, we survey hundreds of survey papers on Natural Language Processing (NLP) and Machine Learning (ML). We categorize these papers into popular topics and do simple counting for some interesting problems. In addition, we show the list of the papers with urls (1063 papers).

:new: A list of LLM surveys is released! Link

Categorization

We follow the ACL and ICML submission guideline of recent years, covering a broad range of areas in NLP and ML. The categorization is as follows:

To reduce class imbalance, we separate some of the hot sub-topics from the original categorization of ACL and ICML submissions. E.g., Named Entity Recognition is a first-level area in our categorization because it is the focus of several surveys.

Statistics

We show the number of paper in each area in Figures 1-2.

<p align="center"><img src="https://s2.loli.net/2023/05/26/DUa43miWf5NFlZx.png" width="70%" height="70%"/></p> <p align="center">Figure 1: # of papers in each NLP area.</p> <p align="center"><img src="https://s2.loli.net/2023/05/26/z3PslUXbZFd6qrB.png" width="70%" height="70%"/></p> <p align="center">Figure 2: # of papers in each ML area.</p>

Also, we plot paper number as a function of publication year (see Figure 3).

<p align="center"><img src="https://s2.loli.net/2023/05/26/7tMmcRO1lK9N5hF.png" width="70%" height="70%"/></p> <p align="center">Figure 3: # of papers vs publication year.</p>

In addition, we generate word clouds to show hot topics in these surveys (see Figures 4-5).

<p align="center"><img src="https://s2.loli.net/2023/05/26/6RqNCKBwsEZtA3H.png" width="60%" height="60%"/></p> <p align="center">Figure 4: The word cloud for NLP.</p> <p align="center"><img src="https://s2.loli.net/2023/05/26/zln92QYvmGLWMUE.png" width="60%" height="60%"/></p> <p align="center">Figure 5: The word cloud for ML.</p>

The NLP Paper List

Computational Social Science and Social Media

  1. A Comprehensive Survey on Community Detection with Deep Learning. arXiv 2021 paper bib

    Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu, Cécile Paris, Surya Nepal, Di Jin, Quan Z. Sheng, Philip S. Yu

  2. A Survey of Fake News: Fundamental Theories, Detection Methods, and Opportunities. ACM Comput. Surv. 2021 paper bib

    Xinyi Zhou, Reza Zafarani

  3. A Survey of Race, Racism, and Anti-Racism in NLP. ACL 2021 paper bib

    Anjalie Field, Su Lin Blodgett, Zeerak Waseem, Yulia Tsvetkov

  4. A Survey on Computational Propaganda Detection. IJCAI 2020 paper bib

    Giovanni Da San Martino, Stefano Cresci, Alberto Barrón-Cedeño, Seunghak Yu, Roberto Di Pietro, Preslav Nakov

  5. A Survey on Trust Prediction in Online Social Networks. IEEE Access 2020 paper bib

    Seyed Mohssen Ghafari, Amin Beheshti, Aditya Joshi, Cécile Paris, Adnan Mahmood, Shahpar Yakhchi, Mehmet A. Orgun

  6. Computational Sociolinguistics: A Survey. Comput. Linguistics 2016 paper bib

    Dong Nguyen, A. Seza Dogruöz, Carolyn P. Rosé, Franciska de Jong

  7. Confronting Abusive Language Online: A Survey from the Ethical and Human Rights Perspective. J. Artif. Intell. Res. 2021 paper bib

    Svetlana Kiritchenko, Isar Nejadgholi, Kathleen C. Fraser

  8. From Symbols to Embeddings: A Tale of Two Representations in Computational Social Science. J. Soc. Comput. 2021 paper bib

    Huimin Chen, Cheng Yang, Xuanming Zhang, Zhiyuan Liu, Maosong Sun, Jianbin Jin

  9. Language (Technology) is Power: A Critical Survey of "Bias" in NLP. ACL 2020 paper bib

    Su Lin Blodgett, Solon Barocas, Hal Daumé III, Hanna M. Wallach

  10. Societal Biases in Language Generation: Progress and Challenges. ACL 2021 paper bib

    Emily Sheng, Kai-Wei Chang, Prem Natarajan, Nanyun Peng

  11. Tackling Online Abuse: A Survey of Automated Abuse Detection Methods. arXiv 2019 paper bib

    Pushkar Mishra, Helen Yannakoudakis, Ekaterina Shutova

  12. When do Word Embeddings Accurately Reflect Surveys on our Beliefs About People?. ACL 2020 paper bib

    Kenneth Joseph, Jonathan H. Morgan

Dialogue and Interactive Systems

  1. A Survey of Arabic Dialogues Understanding for Spontaneous Dialogues and Instant Message. arXiv 2015 paper bib

    AbdelRahim A. Elmadany, Sherif M. Abdou, Mervat Gheith

  2. A Survey of Available Corpora For Building Data-Driven Dialogue Systems: The Journal Version. Dialogue Discourse 2018 paper bib

    Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, Joelle Pineau

  3. A Survey of Document Grounded Dialogue Systems (DGDS). arXiv 2020 paper bib

    Longxuan Ma, Wei-Nan Zhang, Mingda Li, Ting Liu

  4. A Survey of Intent Classification and Slot-Filling Datasets for Task-Oriented Dialog. arXiv 2022 paper bib

    Stefan Larson, Kevin Leach

  5. A Survey of Natural Language Generation Techniques with a Focus on Dialogue Systems - Past, Present and Future Directions. arXiv 2019 paper bib

    Sashank Santhanam, Samira Shaikh

  6. A survey of neural models for the automatic analysis of conversation: Towards a better integration of the social sciences. arXiv 2022 paper bib

    Chloé Clavel, Matthieu Labeau, Justine Cassell

  7. A Survey on Dialog Management: Recent Advances and Challenges. arXiv 2020 paper bib

    Yinpei Dai, Huihua Yu, Yixuan Jiang, Chengguang Tang, Yongbin Li, Jian Sun

  8. A Survey on Dialogue Systems: Recent Advances and New Frontiers. SIGKDD Explor. 2017 paper bib

    Hongshen Chen, Xiaorui Liu, Dawei Yin, Jiliang Tang

  9. Advances in Multi-turn Dialogue Comprehension: A Survey. arXiv 2021 paper bib

    Zhuosheng Zhang, Hai Zhao

  10. Challenges in Building Intelligent Open-domain Dialog Systems. ACM Trans. Inf. Syst. 2020 paper bib

    Minlie Huang, Xiaoyan Zhu, Jianfeng Gao

  11. Conversational Agents: Theory and Applications. arXiv 2022 paper bib

    Mattias Wahde, Marco Virgolin

  12. Conversational Machine Comprehension: a Literature Review. COLING 2020 paper bib

    Somil Gupta, Bhanu Pratap Singh Rawat, Hong Yu

  13. How to Evaluate Your Dialogue Models: A Review of Approaches. arXiv 2021 paper bib

    Xinmeng Li, Wansen Wu, Long Qin, Quanjun Yin

  14. Neural Approaches to Conversational AI. ACL 2018 paper bib

    Jianfeng Gao, Michel Galley, Lihong Li

  15. Neural Approaches to Conversational AI: Question Answering, Task-oriented Dialogues and Social Chatbots. Now Foundations and Trends 2019 paper bib

    Jianfeng Gao, Michel Galley, Lihong Li

  16. POMDP-Based Statistical Spoken Dialog Systems: A Review. Proc. IEEE 2013 paper bib

    Steve J. Young, Milica Gasic, Blaise Thomson, Jason D. Williams

  17. Recent Advances and Challenges in Task-oriented Dialog System. arXiv 2020 paper bib

    Zheng Zhang, Ryuichi Takanobu, Minlie Huang, Xiaoyan Zhu

  18. Recent Advances in Deep Learning Based Dialogue Systems: A Systematic Survey. arXiv 2021 paper bib

    Jinjie Ni, Tom Young, Vlad Pandelea, Fuzhao Xue, Vinay Adiga, Erik Cambria

  19. Utterance-level Dialogue Understanding: An Empirical Study. arXiv 2020 paper bib

    Deepanway Ghosal, Navonil Majumder, Rada Mihalcea, Soujanya Poria

Generation

  1. A Survey of Controllable Text Generation using Transformer-based Pre-trained Language Models. arXiv 2022 paper bib

    Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, Dawei Song

  2. A Survey of Knowledge-Enhanced Text Generation. ACM Comput. Surv. 2022 paper bib

    Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu, Qingyun Wang, Heng Ji, Meng Jiang

  3. A Survey on Multi-hop Question Answering and Generation. arXiv 2022 paper bib

    Vaibhav Mavi, Anubhav Jangra, Adam Jatowt

  4. A Survey on Retrieval-Augmented Text Generation. arXiv 2022 paper bib

    Huayang Li, Yixuan Su, Deng Cai, Yan Wang, Lemao Liu

  5. A Survey on Text Simplification. arXiv 2020 paper bib

    Punardeep Sikka, Vijay Mago

  6. Automatic Detection of Machine Generated Text: A Critical Survey. COLING 2020 paper bib

    Ganesh Jawahar, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan

  7. Automatic Story Generation: Challenges and Attempts. arXiv 2021 paper bib

    Amal Alabdulkarim, Siyan Li, Xiangyu Peng

  8. ChatGPT is not all you need. A State of the Art Review of large Generative AI models. arXiv 2023 paper bib

    Roberto Gozalo-Brizuela, Eduardo C. Garrido-Merchán

  9. Content Selection in Data-to-Text Systems: A Survey. arXiv 2016 paper bib

    Dimitra Gkatzia

  10. Data-Driven Sentence Simplification: Survey and Benchmark. Comput. Linguistics 2020 paper bib

    Fernando Alva-Manchego, Carolina Scarton, Lucia Specia

  11. Deep Learning for Text Style Transfer: A Survey. Comput. Linguistics 2022 paper bib

    Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova, Rada Mihalcea

  12. Evaluation of Text Generation: A Survey. arXiv 2020 paper bib

    Asli Celikyilmaz, Elizabeth Clark, Jianfeng Gao

  13. Human Evaluation of Creative NLG Systems: An Interdisciplinary Survey on Recent Papers. arXiv 2021 paper bib

    Mika Hämäläinen, Khalid Al-Najjar

  14. Keyphrase Generation: A Multi-Aspect Survey. FRUCT 2019 paper bib

    Erion Çano, Ondrej Bojar

  15. Neural Language Generation: Formulation, Methods, and Evaluation. arXiv 2020 paper bib

    Cristina Garbacea, Qiaozhu Mei

  16. Neural Text Generation: Past, Present and Beyond. arXiv 2018 paper bib

    Sidi Lu, Yaoming Zhu, Weinan Zhang, Jun Wang, Yong Yu

  17. Quiz-Style Question Generation for News Stories. WWW 2021 paper bib

    Ádám D. Lelkes, Vinh Q. Tran, Cong Yu

  18. Recent Advances in Neural Question Generation. arXiv 2019 paper bib

    Liangming Pan, Wenqiang Lei, Tat-Seng Chua, Min-Yen Kan

  19. Recent Advances in SQL Query Generation: A Survey. arXiv 2020 paper bib

    Jovan Kalajdjieski, Martina Toshevska, Frosina Stojanovska

  20. Survey of Hallucination in Natural Language Generation. arXiv 2022 paper bib

    Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea Madotto, Pascale Fung

  21. Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation. J. Artif. Intell. Res. 2018 paper bib

    Albert Gatt, Emiel Krahmer

Information Extraction

  1. A Review on Fact Extraction and Verification. ACM Comput. Surv. 2023 paper bib

    Giannis Bekoulis, Christina Papagiannopoulou, Nikos Deligiannis

  2. A Survey of Deep Learning Methods for Relation Extraction. arXiv 2017 paper bib

    Shantanu Kumar

  3. A Survey of Event Extraction From Text. IEEE Access 2019 paper bib

    Wei Xiang, Bang Wang

  4. A Survey of event extraction methods from text for decision support systems. Decis. Support Syst. 2016 paper bib

    Frederik Hogenboom, Flavius Frasincar, Uzay Kaymak, Franciska de Jong, Emiel Caron

  5. A survey of joint intent detection and slot-filling models in natural language understanding. arXiv 2021 paper bib

    Henry Weld, Xiaoqi Huang, Siqi Long, Josiah Poon, Soyeon Caren Han

  6. A Survey of Textual Event Extraction from Social Networks. LPKM 2017 paper bib

    Mohamed Mejri, Jalel Akaichi

  7. A Survey on Deep Learning Event Extraction: Approaches and Applications. arXiv 2021 paper bib

    Qian Li, Jianxin Li, Jiawei Sheng, Shiyao Cui, Jia Wu, Yiming Hei, Hao Peng, Shu Guo, Lihong Wang, Amin Beheshti, Philip S. Yu

  8. A Survey on Open Information Extraction. COLING 2018 paper bib

    Christina Niklaus, Matthias Cetto, André Freitas, Siegfried Handschuh

  9. A Survey on Temporal Reasoning for Temporal Information Extraction from Text (Extended Abstract). IJCAI 2020 paper bib

    Artuur Leeuwenberg, Marie-Francine Moens

  10. An Overview of Event Extraction from Text. DeRiVE@ISWC 2011 paper bib

    Frederik Hogenboom, Flavius Frasincar, Uzay Kaymak, Franciska de Jong

  11. Automatic Extraction of Causal Relations from Natural Language Texts: A Comprehensive Survey. arXiv 2016 paper bib

    Nabiha Asghar

  12. Complex Relation Extraction: Challenges and Opportunities. arXiv 2020 paper bib

    Haiyun Jiang, Qiaoben Bao, Qiao Cheng, Deqing Yang, Li Wang, Yanghua Xiao

  13. Extracting Events and Their Relations from Texts: A Survey on Recent Research Progress and Challenges. AI Open 2020 paper bib

    Kang Liu, Yubo Chen, Jian Liu, Xinyu Zuo, Jun Zhao

  14. Knowledge Extraction in Low-Resource Scenarios: Survey and Perspective. arXiv 2022 paper bib

    Shumin Deng, Ningyu Zhang, Hui Chen, Feiyu Xiong, Jeff Z. Pan, Huajun Chen

  15. More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction. AACL 2020 paper bib

    Xu Han, Tianyu Gao, Yankai Lin, Hao Peng, Yaoliang Yang, Chaojun Xiao, Zhiyuan Liu, Peng Li, Jie Zhou, Maosong Sun

  16. Neural relation extraction: a survey. arXiv 2020 paper bib

    Mehmet Aydar, Ozge Bozal, Furkan Özbay

  17. No Pattern, No Recognition: a Survey about Reproducibility and Distortion Issues of Text Clustering and Topic Modeling. arXiv 2022 paper bib

    Marília Costa Rosendo Silva, Felipe Alves Siqueira, João Pedro Mantovani Tarrega, João Vitor Pataca Beinotti, Augusto Sousa Nunes, Miguel de Mattos Gardini, Vinícius Adolfo Pereira da Silva, Nádia Félix Felipe da Silva, André Carlos Ponce de Leon Ferreira de Carvalho

  18. Recent Neural Methods on Slot Filling and Intent Classification for Task-Oriented Dialogue Systems: A Survey. COLING 2020 paper bib

    Samuel Louvan, Bernardo Magnini

  19. Relation Extraction : A Survey. arXiv 2017 paper bib

    Sachin Pawar, Girish K. Palshikar, Pushpak Bhattacharyya

  20. Techniques for Jointly Extracting Entities and Relations: A Survey. CICLing 2019 paper bib

    Sachin Pawar, Pushpak Bhattacharyya, Girish K. Palshikar

Information Retrieval and Text Mining

  1. A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques. arXiv 2017 paper bib

    Mehdi Allahyari, Seyed Amin Pouriyeh, Mehdi Assefi, Saied Safaei, Elizabeth D. Trippe, Juan B. Gutierrez, Krys J. Kochut

  2. A survey of methods to ease the development of highly multilingual text mining applications. Lang. Resour. Evaluation 2012 paper bib

    Ralf Steinberger

  3. A Survey on Retrieval-Augmented Text Generation. arXiv 2022 paper bib

    Huayang Li, Yixuan Su, Deng Cai, Yan Wang, Lemao Liu

  4. Data Mining and Information Retrieval in the 21st century: A bibliographic review. Comput. Sci. Rev. 2019 paper bib

    Jiaying Liu, Xiangjie Kong, Xinyu Zhou, Lei Wang, Da Zhang, Ivan Lee, Bo Xu, Feng Xia

  5. Dense Text Retrieval based on Pretrained Language Models: A Survey. arXiv 2022 paper bib

    Wayne Xin Zhao, Jing Liu, Ruiyang Ren, Ji-Rong Wen

  6. Neural Entity Linking: A Survey of Models Based on Deep Learning. Semantic Web 2022 paper bib

    Özge Sevgili, Artem Shelmanov, Mikhail Y. Arkhipov, Alexander Panchenko, Chris Biemann

  7. Neural Models for Information Retrieval. arXiv 2017 paper bib

    Bhaskar Mitra, Nick Craswell

  8. Opinion Mining and Analysis: A survey. arXiv 2013 paper bib

    Arti Buche, M. B. Chandak, Akshay Zadgaonkar

  9. Pre-training Methods in Information Retrieval. Found. Trends Inf. Retr. 2022 paper bib

    Yixing Fan, Xiaohui Xie, Yinqiong Cai, Jia Chen, Xinyu Ma, Xiangsheng Li, Ruqing Zhang, Jiafeng Guo

  10. Relational World Knowledge Representation in Contextual Language Models: A Review. EMNLP 2021 paper bib

    Tara Safavi, Danai Koutra

  11. Short Text Topic Modeling Techniques, Applications, and Performance: A Survey. IEEE Trans. Knowl. Data Eng. 2022 paper bib

    Jipeng Qiang, Zhenyu Qian, Yun Li, Yunhao Yuan, Xindong Wu

  12. Taking Search to Task. arXiv 2023 paper bib

    Chirag Shah, Ryen W. White, Paul Thomas, Bhaskar Mitra, Shawon Sarkar, Nicholas J. Belkin

  13. Topic Modelling Meets Deep Neural Networks: A Survey. IJCAI 2021 paper bib

    He Zhao, Dinh Q. Phung, Viet Huynh, Yuan Jin, Lan Du, Wray L. Buntine

Interpretability and Analysis of Models for NLP

  1. A Primer in BERTology: What we know about how BERT works. Trans. Assoc. Comput. Linguistics 2020 paper bib

    Anna Rogers, Olga Kovaleva, Anna Rumshisky

  2. A Survey of the State of Explainable AI for Natural Language Processing. AACL 2020 paper bib

    Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, Prithviraj Sen

  3. A Survey on Deep Learning and Explainability for Automatic Report Generation from Medical Images. ACM Comput. Surv. 2022 paper bib

    Pablo Messina, Pablo Pino, Denis Parra, Alvaro Soto, Cecilia Besa, Sergio Uribe, Marcelo E. Andia, Cristian Tejos, Claudia Prieto, Daniel Capurro

  4. A Survey on Explainability in Machine Reading Comprehension. arXiv 2020 paper bib

    Mokanarangan Thayaparan, Marco Valentino, André Freitas

  5. Analysis Methods in Neural Language Processing: A Survey. Trans. Assoc. Comput. Linguistics 2019 paper bib

    Yonatan Belinkov, James R. Glass

  6. Analyzing and Interpreting Neural Networks for NLP: A Report on the First BlackboxNLP Workshop. Nat. Lang. Eng. 2019 paper bib

    Afra Alishahi, Grzegorz Chrupala, Tal Linzen

  7. Neuron-level Interpretation of Deep NLP Models: A Survey. Trans. Assoc. Comput. Linguistics 2022 paper bib

    Hassan Sajjad, Nadir Durrani, Fahim Dalvi

  8. Post-hoc Interpretability for Neural NLP: A Survey. ACM Comput. Surv. 2023 paper bib

    Andreas Madsen, Siva Reddy, Sarath Chandar

  9. Teach Me to Explain: A Review of Datasets for Explainable Natural Language Processing. NeurIPS Datasets and Benchmarks 2021 paper bib

    Sarah Wiegreffe, Ana Marasovic

  10. *Which BERT? A Survey Organizing Contextualized Encoders. EMNLP 2020 paper bib

    Patrick Xia, Shijie Wu, Benjamin Van Durme

Knowledge Graph

  1. A Review of Relational Machine Learning for Knowledge Graphs. Proc. IEEE 2016 paper bib

    Maximilian Nickel, Kevin Murphy, Volker Tresp, Evgeniy Gabrilovich

  2. A survey of embedding models of entities and relationships for knowledge graph completion. arXiv 2017 paper bib

    Dat Quoc Nguyen

  3. A Survey of Embedding Space Alignment Methods for Language and Knowledge Graphs. arXiv 2020 paper bib

    Alexander Kalinowski, Yuan An

  4. A Survey of Techniques for Constructing Chinese Knowledge Graphs and Their Applications. Sustainability 2018 paper bib

    Tianxing Wu, Guilin Qi, Cheng Li, Meng Wang

  5. A Survey on Graph Neural Networks for Knowledge Graph Completion. arXiv 2020 paper bib

    Siddhant Arora

  6. A Survey on Knowledge Graphs: Representation, Acquisition and Applications. arXiv 2020 paper bib

    Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, Philip S. Yu

  7. Introduction to neural network-based question answering over knowledge graphs. WIREs Data Mining Knowl. Discov. 2021 paper bib

    Nilesh Chakraborty, Denis Lukovnikov, Gaurav Maheshwari, Priyansh Trivedi, Jens Lehmann, Asja Fischer

  8. Knowledge Graph Embedding for Link Prediction: A Comparative Analysis. ACM Trans. Knowl. Discov. Data 2021 paper bib

    Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, Paolo Merialdo

  9. Knowledge Graph Embedding: A Survey from the Perspective of Representation Spaces. arXiv 2022 paper bib

    Jiahang Cao, Jinyuan Fang, Zaiqiao Meng, Shangsong Liang

  10. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE Trans. Knowl. Data Eng. 2017 paper bib

    Quan Wang, Zhendong Mao, Bin Wang, Li Guo

  11. Knowledge Graph Refinement: A Survey of Approaches and Evaluation Methods. Semantic Web 2017 paper bib

    Heiko Paulheim

  12. Knowledge Graphs. ACM Comput. Surv. 2021 paper bib

    Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d'Amato, Gerard de Melo, Claudio Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, Antoine Zimmermann

  13. Knowledge Graphs: An Information Retrieval Perspective. Found. Trends Inf. Retr. 2020 paper bib

    Ridho Reinanda, Edgar Meij, Maarten de Rijke

  14. Multi-Modal Knowledge Graph Construction and Application: A Survey. arXiv 2022 paper bib

    Xiangru Zhu, Zhixu Li, Xiaodan Wang, Xueyao Jiang, Penglei Sun, Xuwu Wang, Yanghua Xiao, Nicholas Jing Yuan

  15. Neural, Symbolic and Neural-symbolic Reasoning on Knowledge Graphs. AI Open 2021 paper bib

    Jing Zhang, Bo Chen, Lingxi Zhang, Xirui Ke, Haipeng Ding

  16. Survey and Open Problems in Privacy Preserving Knowledge Graph: Merging, Query, Representation, Completion and Applications. arXiv 2020 paper bib

    Chaochao Chen, Jamie Cui, Guanfeng Liu, Jia Wu, Li Wang

  17. The Contribution of Knowledge in Visiolinguistic Learning: A Survey on Tasks and Challenges. arXiv 2023 paper bib

    Maria Lymperaiou, Giorgos Stamou

Language Grounding to Vision, Robotics and Beyond

  1. A comprehensive survey of mostly textual document segmentation algorithms since 2008. Pattern Recognit. 2017 paper bib

    Sébastien Eskenazi, Petra Gomez-Krämer, Jean-Marc Ogier

  2. Emotionally-Aware Chatbots: A Survey. arXiv 2019 paper bib

    Endang Wahyu Pamungkas

  3. From Show to Tell: A Survey on Deep Learning-based Image Captioning. IEEE Trans. Pattern Anal. Mach. Intell. 2023 paper bib

    Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Silvia Cascianelli, Giuseppe Fiameni, Rita Cucchiara

  4. Trends in Integration of Vision and Language Research: A Survey of Tasks, Datasets, and Methods. J. Artif. Intell. Res. 2021 paper bib

    Aditya Mogadala, Marimuthu Kalimuthu, Dietrich Klakow

Large Language Models

  1. A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT. arXiv 2023 paper bib

    Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, Lichao Sun

  2. A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT. arXiv 2023 paper bib

    Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan, Lifang He, Hao Peng, Jianxin Li, Jia Wu, Ziwei Liu, Pengtao Xie, Caiming Xiong, Jian Pei, Philip S. Yu, Lichao Sun

  3. A Survey of Safety and Trustworthiness of Large Language Models through the Lens of Verification and Validation. arXiv 2023 paper bib

    Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, Kaiwen Cai, Yanghao Zhang, Sihao Wu, Peipei Xu, Dengyu Wu, Andre Freitas, Mustafa A. Mustafa

  4. A Survey on In-context Learning. arXiv 2023 paper bib

    Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, Zhifang Sui

  5. A Survey of Large Language Models. arXiv 2023 paper bib

    Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, Ji-Rong Wen

  6. AI-Augmented Surveys: Leveraging Large Language Models for Opinion Prediction in Nationally Representative Surveys. arXiv 2023 paper bib

    Junsol Kim, Byungkyu Lee

  7. Bridging the Gap: A Survey on Integrating (Human) Feedback for Natural Language Generation. arXiv 2023 paper bib

    Patrick Fernandes, Aman Madaan, Emmy Liu, António Farinhas, Pedro Henrique Martins, Amanda Bertsch, José G. C. de Souza, Shuyan Zhou, Tongshuang Wu, Graham Neubig, André F. T. Martins

  8. Eight Things to Know about Large Language Models. arXiv 2023 paper bib

    Samuel R. Bowman

  9. Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond. arXiv 2023 paper bib

    Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, Xia Hu

  10. Language Model Behavior: A Comprehensive Survey. arXiv 2023 paper bib

    Tyler A. Chang, Benjamin K. Bergen

  11. Large Language Models Meet NL2Code: A Survey. arXiv 2023 paper bib

    Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Yongji Wang, Jian-Guang Lou

  12. Large-scale Multi-Modal Pre-trained Models: A Comprehensive Survey. arXiv 2023 paper bib

    Xiao Wang, Guangyao Chen, Guangwu Qian, Pengcheng Gao, Xiao-Yong Wei, Yaowei Wang, Yonghong Tian, Wen Gao

  13. On Efficient Training of Large-Scale Deep Learning Models: A Literature Review. arXiv 2023 paper bib

    Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei Tian, Dacheng Tao

  14. One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era. arXiv 2023 paper bib

    Chaoning Zhang, Chenshuang Zhang, Chenghao Li, Yu Qiao, Sheng Zheng, Sumit Kumar Dam, Mengchun Zhang, Jung Uk Kim, Seong Tae Kim, Jinwoo Choi, Gyeong-Moon Park, Sung-Ho Bae, Lik-Hang Lee, Pan Hui, In So Kweon, Choong Seon Hong

  15. Perception, performance, and detectability of conversational artificial intelligence across 32 university courses. arXiv 2023 paper bib

    Hazem Ibrahim, Fengyuan Liu, Rohail Asim, Balaraju Battu, Sidahmed Benabderrahmane, Bashar Alhafni, Wifag Adnan, Tuka Alhanai, Bedoor AlShebli, Riyadh Baghdadi, Jocelyn J. Bélanger, Elena Beretta, Kemal Celik, Moumena Chaqfeh, Mohammed F. Daqaq, Zaynab El Bernoussi, Daryl Fougnie, Borja Garcia de Soto, Alberto Gandolfi, Andras Gyorgy, Nizar Habash, J. Andrew Harris, Aaron Kaufman, Lefteris Kirousis, Korhan Kocak

  16. Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey. arXiv 2021 paper bib

    Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz, Eneko Agirre, Ilana Heintz, Dan Roth

  17. Shortcut Learning of Large Language Models in Natural Language Understanding: A Survey. arXiv 2022 paper bib

    Mengnan Du, Fengxiang He, Na Zou, Dacheng Tao, Xia Hu

  18. Summary of ChatGPT/GPT-4 Research and Perspective Towards the Future of Large Language Models. arXiv 2023 paper bib

    Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hao He, Antong Li, Mengshen He, Zhengliang Liu, Zihao Wu, Dajiang Zhu, Xiang Li, Ning Qiang, Dingang Shen, Tianming Liu, Bao Ge

  19. The Contribution of Knowledge in Visiolinguistic Learning: A Survey on Tasks and Challenges. arXiv 2023 paper bib

    Maria Lymperaiou, Giorgos Stamou

  20. The Science of Detecting LLM-Generated Texts. arXiv 2023 paper bib

    Ruixiang Tang, Yu-Neng Chuang, Xia Hu

  21. The Shaky Foundations of Clinical Foundation Models: A Survey of Large Language Models and Foundation Models for EMRs. arXiv 2023 paper bib

    Michael Wornow, Yizhe Xu, Rahul Thapa, Birju S. Patel, Ethan Steinberg, Scott L. Fleming, Michael A. Pfeffer, Jason A. Fries, Nigam H. Shah

  22. Towards Reasoning in Large Language Models: A Survey. arXiv 2022 paper bib

    Jie Huang, Kevin Chen-Chuan Chang

  23. Tricking LLMs into Disobedience: Understanding, Analyzing, and Preventing Jailbreaks. arXiv 2023 paper bib

    Abhinav Rao, Sachin Vashistha, Atharva Naik, Somak Aditya, Monojit Choudhury

Linguistic Theories, Cognitive Modeling and Psycholinguistics

  1. A Survey of Code-switching: Linguistic and Social Perspectives for Language Technologies. ACL 2021 paper bib

    A. Seza Dogruöz, Sunayana Sitaram, Barbara E. Bullock, Almeida Jacqueline Toribio

  2. Modeling Language Variation and Universals: A Survey on Typological Linguistics for Natural Language Processing. Comput. Linguistics 2019 paper bib

    Edoardo Maria Ponti, Helen O'Horan, Yevgeni Berzak, Ivan Vulic, Roi Reichart, Thierry Poibeau, Ekaterina Shutova, Anna Korhonen

  3. Survey on the Use of Typological Information in Natural Language Processing. COLING 2016 paper bib

    Helen O'Horan, Yevgeni Berzak, Ivan Vulic, Roi Reichart, Anna Korhonen

Machine Learning for NLP

  1. A Comprehensive Survey on Word Representation Models: From Classical to State-Of-The-Art Word Representation Language Models. ACM Trans. Asian Low Resour. Lang. Inf. Process. 2021 paper bib

    Usman Naseem, Imran Razzak, Shah Khalid Khan, Mukesh Prasad

  2. A Survey Of Cross-lingual Word Embedding Models. J. Artif. Intell. Res. 2019 paper bib

    Sebastian Ruder, Ivan Vulic, Anders Søgaard

  3. A Survey of Data Augmentation Approaches for NLP. ACL 2021 paper bib

    Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura, Eduard H. Hovy

  4. A Survey of Neural Network Techniques for Feature Extraction from Text. arXiv 2017 paper bib

    Vineet John

  5. A Survey of Neural Networks and Formal Languages. arXiv 2020 paper bib

    Joshua Ackerman, George Cybenko

  6. A Survey of the Usages of Deep Learning in Natural Language Processing. arXiv 2018 paper bib

    Daniel W. Otter, Julian R. Medina, Jugal K. Kalita

  7. A Survey on Contextual Embeddings. arXiv 2020 paper bib

    Qi Liu, Matt J. Kusner, Phil Blunsom

  8. A Survey on Transfer Learning in Natural Language Processing. arXiv 2020 paper bib

    Zaid Alyafeai, Maged Saeed AlShaibani, Irfan Ahmad

  9. Adversarial Attacks and Defense on Texts: A Survey. arXiv 2020 paper bib

    Aminul Huq, Mst. Tasnim Pervin

  10. Adversarial Attacks on Deep-learning Models in Natural Language Processing: A Survey. ACM Trans. Intell. Syst. Technol. 2020 paper bib

    Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi, Chenliang Li

  11. An Empirical Survey of Unsupervised Text Representation Methods on Twitter Data. W-NUT@EMNLP 2020 paper bib

    Lili Wang, Chongyang Gao, Jason Wei, Weicheng Ma, Ruibo Liu, Soroush Vosoughi

  12. Bangla Natural Language Processing: A Comprehensive Analysis of Classical, Machine Learning, and Deep Learning-Based Methods. IEEE Access 2022 paper bib

    Ovishake Sen, Mohtasim Fuad, Md. Nazrul Islam, Jakaria Rabbi, Mehedi Masud, Md. Kamrul Hasan, Md. Abdul Awal, Awal Ahmed Fime, Md. Tahmid Hasan Fuad, Delowar Sikder, Md. Akil Raihan Iftee

  13. Federated Learning Meets Natural Language Processing: A Survey. arXiv 2021 paper bib

    Ming Liu, Stella Ho, Mengqi Wang, Longxiang Gao, Yuan Jin, He Zhang

  14. From static to dynamic word representations: a survey. Int. J. Mach. Learn. Cybern. 2020 paper bib

    Yuxuan Wang, Yutai Hou, Wanxiang Che, Ting Liu

  15. From Word to Sense Embeddings: A Survey on Vector Representations of Meaning. J. Artif. Intell. Res. 2018 paper bib

    José Camacho-Collados, Mohammad Taher Pilehvar

  16. Graph Neural Networks for Natural Language Processing: A Survey. Found. Trends Mach. Learn. 2023 paper bib

    Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning Gao, Shucheng Li, Jian Pei, Bo Long

  17. Informed Machine Learning - A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems. IEEE Trans. Knowl. Data Eng. 2023 paper bib

    Laura von Rüden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy, Michal Walczak, Jochen Garcke, Christian Bauckhage, Jannis Schuecker

  18. Narrative Science Systems: A Review. arXiv 2015 paper bib

    Paramjot Kaur Sarao, Puneet Mittal, Rupinder Kaur

  19. Natural Language Processing Advancements By Deep Learning: A Survey. arXiv 2020 paper bib

    Amirsina Torfi, Rouzbeh A. Shirvani, Yaser Keneshloo, Nader Tavaf, Edward A. Fox

  20. Recent Trends in Deep Learning Based Natural Language Processing [Review Article]. IEEE Comput. Intell. Mag. 2018 paper bib

    Tom Young, Devamanyu Hazarika, Soujanya Poria, Erik Cambria

  21. Symbolic, Distributed, and Distributional Representations for Natural Language Processing in the Era of Deep Learning: A Survey. Frontiers Robotics AI 2019 paper bib

    Lorenzo Ferrone, Fabio Massimo Zanzotto

  22. Token-Modification Adversarial Attacks for Natural Language Processing: A Survey. arXiv 2021 paper bib

    Tom Roth, Yansong Gao, Alsharif Abuadbba, Surya Nepal, Wei Liu

  23. Towards a Robust Deep Neural Network in Texts: A Survey. arXiv 2019 paper bib

    Wenqi Wang, Lina Wang, Run Wang, Zhibo Wang, Aoshuang Ye

  24. Word Embeddings: A Survey. arXiv 2019 paper bib

    Felipe Almeida, Geraldo Xexéo

Machine Translation

  1. A Comprehensive Survey of Multilingual Neural Machine Translation. arXiv 2020 paper bib

    Raj Dabre, Chenhui Chu, Anoop Kunchukuttan

  2. A Survey of Deep Learning Techniques for Neural Machine Translation. arXiv 2020 paper bib

    Shuoheng Yang, Yuxin Wang, Xiaowen Chu

  3. A Survey of Domain Adaptation for Neural Machine Translation. COLING 2018 paper bib

    Chenhui Chu, Rui Wang

  4. A Survey of Methods to Leverage Monolingual Data in Low-resource Neural Machine Translation. arXiv 2019 paper bib

    Ilshat Gibadullin, Aidar Valeev, Albina Khusainova, Adil Khan

  5. A Survey of Orthographic Information in Machine Translation. SN Comput. Sci. 2021 paper bib

    Bharathi Raja Chakravarthi, Priya Rani, Mihael Arcan, John P. McCrae

  6. A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena. Comput. Linguistics 2016 paper bib

    Arianna Bisazza, Marcello Federico

  7. A Survey on Document-level Neural Machine Translation: Methods and Evaluation. ACM Comput. Surv. 2022 paper bib

    Sameen Maruf, Fahimeh Saleh, Gholamreza Haffari

  8. A Survey on Low-Resource Neural Machine Translation. IJCAI 2021 paper bib

    Rui Wang, Xu Tan, Renqian Luo, Tao Qin, Tie-Yan Liu

  9. A Survey on Non-Autoregressive Generation for Neural Machine Translation and Beyond. arXiv 2022 paper bib

    Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min Zhang, Tao Qin, Tie-Yan Liu

  10. Domain Adaptation and Multi-Domain Adaptation for Neural Machine Translation: A Survey. J. Artif. Intell. Res. 2022 paper bib

    Danielle Saunders

  11. Gender Bias in Machine Translation. Trans. Assoc. Comput. Linguistics 2021 paper bib

    Beatrice Savoldi, Marco Gaido, Luisa Bentivogli, Matteo Negri, Marco Turchi

  12. Machine Translation Approaches and Survey for Indian Languages. Int. J. Comput. Linguistics Chin. Lang. Process. 2013 paper bib

    P. J. Antony

  13. Machine Translation Evaluation Resources and Methods: A Survey. Ireland Postgraduate Research Conference 2018 paper bib

    Lifeng Han

  14. Machine Translation using Semantic Web Technologies: A Survey. J. Web Semant. 2018 paper bib

    Diego Moussallem, Matthias Wauer, Axel-Cyrille Ngonga Ngomo

  15. Machine-Translation History and Evolution: Survey for Arabic-English Translations. arXiv 2017 paper bib

    Nabeel T. Alsohybe, Neama Abdulaziz Dahan, Fadl Mutaher Ba-Alwi

  16. Multimodal Machine Translation through Visuals and Speech. Mach. Transl. 2020 paper bib

    Umut Sulubacak, Ozan Caglayan, Stig-Arne Grönroos, Aku Rouhe, Desmond Elliott, Lucia Specia, Jörg Tiedemann

  17. Neural Machine Translation and Sequence-to-sequence Models: A Tutorial. arXiv 2017 paper bib

    Graham Neubig

  18. Neural Machine Translation for Low-Resource Languages: A Survey. arXiv 2021 paper bib

    Surangika Ranathunga, En-Shiun Annie Lee, Marjana Prifti Skenduli, Ravi Shekhar, Mehreen Alam, Rishemjit Kaur

  19. Neural Machine Translation: A Review. J. Artif. Intell. Res. 2020 paper bib

    Felix Stahlberg

  20. Neural machine translation: A review of methods, resources, and tools. AI Open 2020 paper bib

    Zhixing Tan, Shuo Wang, Zonghan Yang, Gang Chen, Xuancheng Huang, Maosong Sun, Yang Liu

  21. Neural Machine Translation: Challenges, Progress and Future. arXiv 2020 paper bib

    Jiajun Zhang, Chengqing Zong

  22. Survey of Low-Resource Machine Translation. Comput. Linguistics 2022 paper bib

    Barry Haddow, Rachel Bawden, Antonio Valerio Miceli Barone, Jindrich Helcl, Alexandra Birch

  23. The Query Translation Landscape: a Survey. arXiv 2019 paper bib

    Mohamed Nadjib Mami, Damien Graux, Harsh Thakkar, Simon Scerri, Sören Auer, Jens Lehmann

Named Entity Recognition

  1. A Survey of Arabic Named Entity Recognition and Classification. Comput. Linguistics 2014 paper bib

    Khaled Shaalan

  2. A survey of named entity recognition and classification. Lingvisticae Investigationes 2007 paper bib

    David Nadeau, Satoshi Sekine

  3. A Survey of Named Entity Recognition in Assamese and other Indian Languages. arXiv 2014 paper bib

    Gitimoni Talukdar, Pranjal Protim Borah, Arup Baruah

  4. A Survey on Deep Learning for Named Entity Recognition. IEEE Trans. Knowl. Data Eng. 2022 paper bib

    Jing Li, Aixin Sun, Jianglei Han, Chenliang Li

  5. A Survey on Recent Advances in Named Entity Recognition from Deep Learning models. COLING 2018 paper bib

    Vikas Yadav, Steven Bethard

  6. Design Challenges and Misconceptions in Neural Sequence Labeling. COLING 2018 paper bib

    Jie Yang, Shuailong Liang, Yue Zhang

Natural Language Inference

  1. A Comparative Survey of Recent Natural Language Interfaces for Databases. VLDB J. 2019 paper bib

    Katrin Affolter, Kurt Stockinger, Abraham Bernstein

  2. Beyond Leaderboards: A survey of methods for revealing weaknesses in Natural Language Inference data and models. arXiv 2020 paper bib

    Viktor Schlegel, Goran Nenadic, Riza Batista-Navarro

  3. Recent Advances in Natural Language Inference: A Survey of Benchmarks, Resources, and Approaches. arXiv 2019 paper bib

    Shane Storks, Qiaozi Gao, Joyce Y Chai

Natural Language Processing

  1. A bit of progress in language modeling. Comput. Speech Lang. 2001 paper bib

    Joshua T. Goodman

  2. A Brief Survey and Comparative Study of Recent Development of Pronoun Coreference Resolution. arXiv 2020 paper bib

    Hongming Zhang, Xinran Zhao, Yangqiu Song

  3. A Comprehensive Survey of Grammar Error Correction. arXiv 2020 paper bib

    Yu Wang, Yuelin Wang, Jie Liu, Zhuo Liu

  4. A Neural Entity Coreference Resolution Review. Expert Syst. Appl. 2021 paper bib

    Nikolaos Stylianou, Ioannis P. Vlahavas

  5. A Primer on Neural Network Models for Natural Language Processing. J. Artif. Intell. Res. 2016 paper bib

    Yoav Goldberg

  6. A Review of Bangla Natural Language Processing Tasks and the Utility of Transformer Models. arXiv 2021 paper bib

    Firoj Alam, Md. Arid Hasan, Tanvirul Alam, Akib Khan, Jannatul Tajrin, Naira Khan, Shammur Absar Chowdhury

  7. A Survey and Classification of Controlled Natural Languages. Comput. Linguistics 2014 paper bib

    Tobias Kuhn

  8. A Survey of Implicit Discourse Relation Recognition. arXiv 2022 paper bib

    Wei Xiang, Bang Wang

  9. A Survey on Bias and Fairness in Natural Language Processing. arXiv 2022 paper bib

    Rajas Bansal

  10. A Survey on Dynamic Neural Networks for Natural Language Processing. arXiv 2022 paper bib

    Canwen Xu, Julian J. McAuley

  11. A Survey on In-context Learning. arXiv 2023 paper bib

    Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, Zhifang Sui

  12. A Survey on Model Compression and Acceleration for Pretrained Language Models. arXiv 2022 paper bib

    Canwen Xu, Julian J. McAuley

  13. A Survey on Neural Network Language Models. arXiv 2019 paper bib

    Kun Jing, Jungang Xu

  14. A Survey on Recent Approaches for Natural Language Processing in Low-Resource Scenarios. NAACL-HLT 2021 paper bib

    Michael A. Hedderich, Lukas Lange, Heike Adel, Jannik Strötgen, Dietrich Klakow

  15. A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future Directions. arXiv 2022 paper bib

    Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao, Jian Sun, Luo Si, Fei Huang, Yongbin Li

  16. An Introductory Survey on Attention Mechanisms in NLP Problems. IntelliSys 2019 paper bib

    Dichao Hu

  17. Attention in Natural Language Processing. IEEE Trans. Neural Networks Learn. Syst. 2021 paper bib

    Andrea Galassi, Marco Lippi, Paolo Torroni

  18. Automatic Arabic Dialect Identification Systems for Written Texts: A Survey. arXiv 2020 paper bib

    Maha J. Althobaiti

  19. Chinese Word Segmentation: A Decade Review. Journal of Chinese Information Processing 2007 paper bib

    Changning Huang, Hai Zhao

  20. Continual Lifelong Learning in Natural Language Processing: A Survey. COLING 2020 paper bib

    Magdalena Biesialska, Katarzyna Biesialska, Marta R. Costa-jussà

  21. Deep Learning Approaches to Lexical Simplification: A Survey. arXiv 2023 paper bib

    Kai North, Tharindu Ranasinghe, Matthew Shardlow, Marcos Zampieri

  22. Efficient Methods for Natural Language Processing: A Survey. arXiv 2022 paper bib

    Marcos V. Treviso, Tianchu Ji, Ji-Ung Lee, Betty van Aken, Qingqing Cao, Manuel R. Ciosici, Michael Hassid, Kenneth Heafield, Sara Hooker, Pedro Henrique Martins, André F. T. Martins, Peter A. Milder, Colin Raffel, Edwin Simpson, Noam Slonim, Niranjan Balasubramanian, Leon Derczynski, Roy Schwartz

  23. Experience Grounds Language. EMNLP 2020 paper bib

    Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Bengio, Joyce Chai, Mirella Lapata, Angeliki Lazaridou, Jonathan May, Aleksandr Nisnevich, Nicolas Pinto, Joseph P. Turian

  24. How Commonsense Knowledge Helps with Natural Language Tasks: A Survey of Recent Resources and Methodologies. arXiv 2021 paper bib

    Yubo Xie, Pearl Pu

  25. Jumping NLP curves: A review of natural language processing research [Review Article]. IEEE Comput. Intell. Mag. 2014 paper bib

    Erik Cambria, Bebo White

  26. Meta Learning for Natural Language Processing: A Survey. NAACL-HLT 2022 paper bib

    Hung-yi Lee, Shang-Wen Li, Thang Vu

  27. Natural Language Processing - A Survey. arXiv 2012 paper bib

    Kevin Mote

  28. Natural Language Processing: State of The Art, Current Trends and Challenges. Multim. Tools Appl. 2023 paper bib

    Diksha Khurana, Aditya Koli, Kiran Khatter, Sukhdev Singh

  29. Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering. COLING 2018 paper bib

    Wuwei Lan, Wei Xu

  30. Overview of the Transformer-based Models for NLP Tasks. FedCSIS 2020 paper bib

    Anthony Gillioz, Jacky Casas, Elena Mugellini, Omar Abou Khaled

  31. Paradigm Shift in Natural Language Processing. Int. J. Autom. Comput. 2022 paper bib

    Tianxiang Sun, Xiangyang Liu, Xipeng Qiu, Xuan-Jing Huang

  32. Progress in Neural NLP: Modeling, Learning, and Reasoning. Engineering 2020 paper bib

    Ming Zhou, Nan Duan, Shujie Liu, Heung-Yeung Shum

  33. Putting Humans in the Natural Language Processing Loop: A Survey. arXiv 2021 paper bib

    Zijie J. Wang, Dongjin Choi, Shenyu Xu, Diyi Yang

  34. State-of-the-art generalisation research in NLP: A taxonomy and review. arXiv 2022 paper bib

    Dieuwke Hupkes, Mario Giulianelli, Verna Dankers, Mikel Artetxe, Yanai Elazar, Tiago Pimentel, Christos Christodoulopoulos, Karim Lasri, Naomi Saphra, Arabella Sinclair, Dennis Ulmer, Florian Schottmann, Khuyagbaatar Batsuren, Kaiser Sun, Koustuv Sinha, Leila Khalatbari, Maria Ryskina, Rita Frieske, Ryan Cotterell, Zhijing Jin

  35. Survey on Publicly Available Sinhala Natural Language Processing Tools and Research. arXiv 2019 paper bib

    Nisansa de Silva

  36. Visualizing Natural Language Descriptions: A Survey. ACM Comput. Surv. 2016 paper bib

    Kaveh Hassani, Won-Sook Lee

  37. Word Alignment in the Era of Deep Learning: A Tutorial. arXiv 2022 paper bib

    Bryan Li

NLP Applications

  1. A Short Survey of Biomedical Relation Extraction Techniques. arXiv 2017 paper bib

    Elham Shahab

  2. A Survey of Learning-based Automated Program Repair. arXiv 2023 paper bib

    Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, Zhenyu Chen

  3. A Survey on Legal Judgment Prediction: Datasets, Metrics, Models and Challenges. arXiv 2022 paper bib

    Junyun Cui, Xiaoyu Shen, Feiping Nie, Zheng Wang, Jinglong Wang, Yulong Chen

  4. A survey on natural language processing (nlp) and applications in insurance. arXiv 2020 paper bib

    Antoine Ly, Benno Uthayasooriyar, Tingting Wang

  5. Android Security using NLP Techniques: A Review. arXiv 2021 paper bib

    Sevil Sen, Burcu Can

  6. Disinformation Detection: A review of linguistic feature selection and classification models in news veracity assessments. arXiv 2019 paper bib

    Jillian Tompkins

  7. Extraction and Analysis of Fictional Character Networks: A Survey. ACM Comput. Surv. 2019 paper bib

    Vincent Labatut, Xavier Bost

  8. How Does NLP Benefit Legal System: A Summary of Legal Artificial Intelligence. ACL 2020 paper bib

    Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang Zhang, Zhiyuan Liu, Maosong Sun

  9. Natural Language Based Financial Forecasting: A Survey. Artif. Intell. Rev. 2018 paper bib

    Frank Z. Xing, Erik Cambria, Roy E. Welsch

  10. Neural Natural Language Processing for Unstructured Data in Electronic Health Records: a Review. arXiv 2021 paper bib

    Irene Li, Jessica Pan, Jeremy Goldwasser, Neha Verma, Wai Pan Wong, Muhammed Yavuz Nuzumlali, Benjamin Rosand, Yixin Li, Matthew Zhang, David Chang, Richard Andrew Taylor, Harlan M. Krumholz, Dragomir R. Radev

  11. SECNLP: A survey of embeddings in clinical natural language processing. J. Biomed. Informatics 2020 paper bib

    Katikapalli Subramanyam Kalyan, Sivanesan Sangeetha

  12. Survey of Natural Language Processing Techniques in Bioinformatics. Comput. Math. Methods Medicine 2015 paper bib

    Zhiqiang Zeng, Hua Shi, Yun Wu, Zhiling Hong

  13. Survey of Text-based Epidemic Intelligence: A Computational Linguistics Perspective. ACM Comput. Surv. 2020 paper bib

    Aditya Joshi, Sarvnaz Karimi, Ross Sparks, Cécile Paris, C. Raina MacIntyre

  14. The Potential of Machine Learning and NLP for Handling Students' Feedback (A Short Survey). arXiv 2020 paper bib

    Maryam Edalati

  15. Towards Improved Model Design for Authorship Identification: A Survey on Writing Style Understanding. arXiv 2020 paper bib

    Weicheng Ma, Ruibo Liu, Lili Wang, Soroush Vosoughi

Pretrained Models

  1. A Primer on Contrastive Pretraining in Language Processing: Methods, Lessons Learned and Perspectives. arXiv 2021 paper bib

    Nils Rethmeier, Isabelle Augenstein

  2. A Review on Language Models as Knowledge Bases. arXiv 2022 paper bib

    Badr AlKhamissi, Millicent Li, Asli Celikyilmaz, Mona T. Diab, Marjan Ghazvininejad

  3. A Short Survey of Pre-trained Language Models for Conversational AI-A NewAge in NLP. arXiv 2021 paper bib

    Munazza Zaib, Quan Z. Sheng, Wei Emma Zhang

  4. A Survey of Controllable Text Generation using Transformer-based Pre-trained Language Models. arXiv 2022 paper bib

    Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, Dawei Song

  5. A Survey of Vision-Language Pre-Trained Models. IJCAI 2022 paper bib

    Yifan Du, Zikang Liu, Junyi Li, Wayne Xin Zhao

  6. A Survey on Time-Series Pre-Trained Models. arXiv 2023 paper bib

    Qianli Ma, Zhen Liu, Zhenjing Zheng, Ziyang Huang, Siying Zhu, Zhongzhong Yu, James T. Kwok

  7. AMMUS : A Survey of Transformer-based Pretrained Models in Natural Language Processing. arXiv 2021 paper bib

    Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, Sivanesan Sangeetha

  8. Commonsense Reasoning for Conversational AI: A Survey of the State of the Art. arXiv 2023 paper bib

    Christopher Richardson, Larry Heck

  9. Dense Text Retrieval based on Pretrained Language Models: A Survey. arXiv 2022 paper bib

    Wayne Xin Zhao, Jing Liu, Ruiyang Ren, Ji-Rong Wen

  10. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Comput. Surv. 2023 paper bib

    Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, Graham Neubig

  11. Pretrained Language Models for Text Generation: A Survey. arXiv 2021 paper bib

    Junyi Li, Tianyi Tang, Wayne Xin Zhao, Ji-Rong Wen

  12. Pre-trained models for natural language processing: A survey. arXiv 2020 paper bib

    Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, Xuanjing Huang

  13. Pre-Trained Models: Past, Present and Future. arXiv 2021 paper bib

    Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin, Yanyan Lan, Yang Liu, Zhiyuan Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song, Jie Tang, Ji-Rong Wen, Jinhui Yuan, Wayne Xin Zhao, Jun Zhu

  14. Pretrained Transformers for Text Ranking: BERT and Beyond. WSDM 2021 paper bib

    Andrew Yates, Rodrigo Nogueira, Jimmy Lin

  15. Pre-training Methods in Information Retrieval. Found. Trends Inf. Retr. 2022 paper bib

    Yixing Fan, Xiaohui Xie, Yinqiong Cai, Jia Chen, Xinyu Ma, Xiangsheng Li, Ruqing Zhang, Jiafeng Guo

  16. Survey: Transformer based Video-Language Pre-training. AI Open 2022 paper bib

    Ludan Ruan, Qin Jin

  17. VLP: A Survey on Vision-Language Pre-training. Int. J. Autom. Comput. 2023 paper bib

    Feilong Chen, Duzhen Zhang, Minglun Han, Xiu-Yi Chen, Jing Shi, Shuang Xu, Bo Xu

Prompt

  1. Is Prompt All You Need? No. A Comprehensive and Broader View of Instruction Learning. arXiv 2023 paper bib

    Renze Lou, Kai Zhang, Wenpeng Yin

  2. OpenPrompt: An Open-source Framework for Prompt-learning. ACL 2022 paper bib

    Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Haitao Zheng, Maosong Sun

  3. Reasoning with Language Model Prompting: A Survey. arXiv 2022 paper bib

    Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang, Huajun Chen

Question Answering

  1. A Survey of Question Answering over Knowledge Base. CCKS 2019 paper bib

    Peiyun Wu, Xiaowang Zhang, Zhiyong Feng

  2. A Survey on Complex Knowledge Base Question Answering: Methods, Challenges and Solutions. IJCAI 2021 paper bib

    Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang, Wayne Xin Zhao, Ji-Rong Wen

  3. A Survey on Complex Question Answering over Knowledge Base: Recent Advances and Challenges. arXiv 2020 paper bib

    Bin Fu, Yunqi Qiu, Chengguang Tang, Yang Li, Haiyang Yu, Jian Sun

  4. A Survey on Multi-hop Question Answering and Generation. arXiv 2022 paper bib

    Vaibhav Mavi, Anubhav Jangra, Adam Jatowt

  5. A survey on question answering technology from an information retrieval perspective. Inf. Sci. 2011 paper bib

    Oleksandr Kolomiyets, Marie-Francine Moens

  6. A Survey on Why-Type Question Answering Systems. arXiv 2019 paper bib

    Manvi Breja, Sanjay Kumar Jain

  7. Complex Knowledge Base Question Answering: A Survey. arXiv 2021 paper bib

    Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang, Wayne Xin Zhao, Ji-Rong Wen

  8. Core techniques of question answering systems over knowledge bases: a survey. Knowl. Inf. Syst. 2018 paper bib

    Dennis Diefenbach, Vanessa López, Kamal Deep Singh, Pierre Maret

  9. Introduction to Neural Network based Approaches for Question Answering over Knowledge Graphs. arXiv 2019 paper bib

    Nilesh Chakraborty, Denis Lukovnikov, Gaurav Maheshwari, Priyansh Trivedi, Jens Lehmann, Asja Fischer

  10. Narrative Question Answering with Cutting-Edge Open-Domain QA Techniques: A Comprehensive Study. Trans. Assoc. Comput. Linguistics 2021 paper bib

    Xiangyang Mou, Chenghao Yang, Mo Yu, Bingsheng Yao, Xiaoxiao Guo, Saloni Potdar, Hui Su

  11. Question Answering Systems: Survey and Trends. Procedia Computer Science 2015 paper bib

    Abdelghani Bouziane, Djelloul Bouchiha, Noureddine Doumi, Mimoun Malki

  12. Retrieving and Reading: A Comprehensive Survey on Open-domain Question Answering. arXiv 2021 paper bib

    Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, Tat-Seng Chua

  13. Survey of Visual Question Answering: Datasets and Techniques. arXiv 2017 paper bib

    Akshay Kumar Gupta

  14. Text-based Question Answering from Information Retrieval and Deep Neural Network Perspectives: A Survey. WIREs Data Mining Knowl. Discov. 2021 paper bib

    Zahra Abbasiantaeb, Saeedeh Momtazi

  15. Tutorial on Answering Questions about Images with Deep Learning. arXiv 2016 paper bib

    Mateusz Malinowski, Mario Fritz

  16. Visual Question Answering using Deep Learning: A Survey and Performance Analysis. CVIP 2020 paper bib

    Yash Srivastava, Vaishnav Murali, Shiv Ram Dubey, Snehasis Mukherjee

Reading Comprehension

  1. A Survey on Explainability in Machine Reading Comprehension. arXiv 2020 paper bib

    Mokanarangan Thayaparan, Marco Valentino, André Freitas

  2. A Survey on Machine Reading Comprehension Systems. Nat. Lang. Eng. 2022 paper bib

    Razieh Baradaran, Razieh Ghiasi, Hossein Amirkhani

  3. A Survey on Machine Reading Comprehension: Tasks, Evaluation Metrics, and Benchmark Datasets. arXiv 2020 paper bib

    Chengchang Zeng, Shaobo Li, Qin Li, Jie Hu, Jianjun Hu

  4. A Survey on Neural Machine Reading Comprehension. arXiv 2019 paper bib

    Boyu Qiu, Xu Chen, Jungang Xu, Yingfei Sun

  5. English Machine Reading Comprehension Datasets: A Survey. EMNLP 2021 paper bib

    Daria Dzendzik, Jennifer Foster, Carl Vogel

  6. Machine Reading Comprehension: a Literature Review. arXiv 2019 paper bib

    Xin Zhang, An Yang, Sujian Li, Yizhong Wang

  7. Machine Reading Comprehension: The Role of Contextualized Language Models and Beyond. arXiv 2020 paper bib

    Zhuosheng Zhang, Hai Zhao, Rui Wang

  8. Neural Machine Reading Comprehension: Methods and Trends. arXiv 2019 paper bib

    Shanshan Liu, Xin Zhang, Sheng Zhang, Hui Wang, Weiming Zhang

Recommender Systems

  1. A Review of Dataset and Labeling Methods for Causality Extraction. COLING 2020 paper bib

    Jinghang Xu, Wanli Zuo, Shining Liang, Xianglin Zuo

  2. A review on deep learning for recommender systems: challenges and remedies. Artif. Intell. Rev. 2019 paper bib

    Zeynep Batmaz, Ali Yürekli, Alper Bilge, Cihan Kaleli

  3. A Survey of Accuracy Evaluation Metrics of Recommendation Tasks. J. Mach. Learn. Res. 2009 paper bib

    Asela Gunawardana, Guy Shani

  4. A survey of collaborative filtering based social recommender systems. Comput. Commun. 2014 paper bib

    Xiwang Yang, Yang Guo, Yong Liu, Harald Steck

  5. A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009 paper bib

    Xiaoyuan Su, Taghi M. Khoshgoftaar

  6. A Survey of Deep Reinforcement Learning in Recommender Systems: A Systematic Review and Future Directions. arXiv 2021 paper bib

    Xiaocong Chen, Lina Yao, Julian J. McAuley, Guanglin Zhou, Xianzhi Wang

  7. A Survey of Explanations in Recommender Systems. ICDE Workshops 2007 paper bib

    Nava Tintarev, Judith Masthoff

  8. A Survey on Accuracy-oriented Neural Recommendation: From Collaborative Filtering to Information-rich Recommendation. arXiv 2021 paper bib

    Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, Meng Wang

  9. A survey on Adversarial Recommender Systems: from Attack/Defense strategies to Generative Adversarial Networks. ACM Comput. Surv. 2022 paper bib

    Yashar Deldjoo, Tommaso Di Noia, Felice Antonio Merra

  10. A Survey on Conversational Recommender Systems. ACM Comput. Surv. 2022 paper bib

    Dietmar Jannach, Ahtsham Manzoor, Wanling Cai, Li Chen

  11. A survey on group recommender systems. J. Intell. Inf. Syst. 2020 paper bib

    Sriharsha Dara, C. Ravindranath Chowdary, Chintoo Kumar

  12. A Survey on Knowledge Graph-Based Recommender Systems. IEEE Trans. Knowl. Data Eng. 2022 paper bib

    Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, Qing He

  13. A Survey on Personality-Aware Recommendation Systems. Artif. Intell. Rev. 2022 paper bib

    Sahraoui Dhelim, Nyothiri Aung, Mohammed Amine Bouras, Huansheng Ning, Erik Cambria

  14. A Survey on Reinforcement Learning for Recommender Systems. arXiv 2021 paper bib

    Yuanguo Lin, Yong Liu, Fan Lin, Pengcheng Wu, Wenhua Zeng, Chunyan Miao

  15. A Survey on Session-based Recommender Systems. ACM Comput. Surv. 2022 paper bib

    Shoujin Wang, Longbing Cao, Yan Wang, Quan Z. Sheng, Mehmet A. Orgun, Defu Lian

  16. A Survey on the Fairness of Recommender Systems. arXiv 2022 paper bib

    Yifan Wang, Weizhi Ma, Min Zhang, Yiqun Liu, Shaoping Ma

  17. Advances and Challenges in Conversational Recommender Systems: A Survey. AI Open 2021 paper bib

    Chongming Gao, Wenqiang Lei, Xiangnan He, Maarten de Rijke, Tat-Seng Chua

  18. Advances and Challenges of Multi-task Learning Method in Recommender System: A Survey. arXiv 2023 paper bib

    Mingzhu Zhang, Ruiping Yin, Zhen Yang, Yipeng Wang, Kan Li

  19. Are we really making much progress? A worrying analysis of recent neural recommendation approaches. RecSys 2019 paper bib

    Maurizio Ferrari Dacrema, Paolo Cremonesi, Dietmar Jannach

  20. AutoML for Deep Recommender Systems: A Survey. arXiv 2022 paper bib

    Ruiqi Zheng, Liang Qu, Bin Cui, Yuhui Shi, Hongzhi Yin

  21. Bias and Debias in Recommender System: A Survey and Future Directions. arXiv 2020 paper bib

    Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, Xiangnan He

  22. Causal Inference in Recommender Systems: A Survey of Strategies for Bias Mitigation, Explanation, and Generalization. arXiv 2023 paper bib

    Yaochen Zhu, Jing Ma, Jundong Li

  23. Collaborative Filtering beyond the User-Item Matrix: A Survey of the State of the Art and Future Challenges. ACM Comput. Surv. 2014 paper bib

    Yue Shi, Martha A. Larson, Alan Hanjalic

  24. Comparison of collaborative filtering algorithms: Limitations of current techniques and proposals for scalable, high-performance recommender systems. ACM Trans. Web 2011 paper bib

    Fidel Cacheda, Victor Carneiro, Diego Fernández, Vreixo Formoso

  25. Content-based Recommender Systems: State of the Art and Trends. Recommender Systems Handbook 2011 paper bib

    Pasquale Lops, Marco de Gemmis, Giovanni Semeraro

  26. Cross Domain Recommender Systems: A Systematic Literature Review. ACM Comput. Surv. 2017 paper bib

    Muhammad Murad Khan, Roliana Ibrahim, Imran Ghani

  27. Cross-Domain Recommendation: Challenges, Progress, and Prospects. IJCAI 2021 paper bib

    Feng Zhu, Yan Wang, Chaochao Chen, Jun Zhou, Longfei Li, Guanfeng Liu

  28. Deep Conversational Recommender Systems: A New Frontier for Goal-Oriented Dialogue Systems. arXiv 2020 paper bib

    Dai Hoang Tran, Quan Z. Sheng, Wei Emma Zhang, Salma Abdalla Hamad, Munazza Zaib, Nguyen Hoang Tran, Lina Yao, Nguyen Lu Dang Khoa

  29. Deep Learning based Recommender System: A Survey and New Perspectives. ACM Comput. Surv. 2019 paper bib

    Shuai Zhang, Lina Yao, Aixin Sun, Yi Tay

  30. Deep Learning for Matching in Search and Recommendation. Found. Trends Inf. Retr. 2020 paper bib

    Jun Xu, Xiangnan He, Hang Li

  31. Deep Learning on Knowledge Graph for Recommender System: A Survey. arXiv 2020 paper bib

    Yang Gao, Yi-Fan Li, Yu Lin, Hang Gao, Latifur Khan

  32. Deep Meta-learning in Recommendation Systems: A Survey. arXiv 2022 paper bib

    Chunyang Wang, Yanmin Zhu, Haobing Liu, Tianzi Zang, Jiadi Yu, Feilong Tang

  33. Diversity in recommender systems - A survey. Knowl. Based Syst. 2017 paper bib

    Matevz Kunaver, Tomaz Pozrl

  34. Explainable Recommendation: A Survey and New Perspectives. Found. Trends Inf. Retr. 2020 paper bib

    Yongfeng Zhang, Xu Chen

  35. Graph Learning Approaches to Recommender Systems: A Review. arXiv 2020 paper bib

    Shoujin Wang, Liang Hu, Yan Wang, Xiangnan He, Quan Z. Sheng, Mehmet A. Orgun, Longbing Cao, Nan Wang, Francesco Ricci, Philip S. Yu

  36. Graph Learning based Recommender Systems: A Review. IJCAI 2021 paper bib

    Shoujin Wang, Liang Hu, Yan Wang, Xiangnan He, Quan Z. Sheng, Mehmet A. Orgun, Longbing Cao, Francesco Ricci, Philip S. Yu

  37. Graph Neural Networks in Recommender Systems: A Survey. arXiv 2020 paper bib

    Shiwen Wu, Wentao Zhang, Fei Sun, Bin Cui

  38. Hybrid Recommender Systems: Survey and Experiments. User Model. User Adapt. Interact. 2002 paper bib

    Robin D. Burke

  39. Knowledge Transfer via Pre-training for Recommendation: A Review and Prospect. Frontiers Big Data 2021 paper bib

    Zheni Zeng, Chaojun Xiao, Yuan Yao, Ruobing Xie, Zhiyuan Liu, Fen Lin, Leyu Lin, Maosong Sun

  40. Measuring "Why" in Recommender Systems: a Comprehensive Survey on the Evaluation of Explainable Recommendation. arXiv 2022 paper bib

    Xu Chen, Yongfeng Zhang, Ji-Rong Wen

  41. Parallel and Distributed Collaborative Filtering: A Survey. ACM Comput. Surv. 2016 paper bib

    Efthalia Karydi, Konstantinos G. Margaritis

  42. Recommender systems based on user reviews: the state of the art. User Model. User Adapt. Interact. 2015 paper bib

    Li Chen, Guanliang Chen, Feng Wang

  43. Recommender Systems for the Internet of Things: A Survey. arXiv 2020 paper bib

    May S. Altulyan, Lina Yao, Xianzhi Wang, Chaoran Huang, Salil S. Kanhere, Quan Z. Sheng

  44. Recommender systems survey. Knowl. Based Syst. 2013 paper bib

    Bobadilla J., Ortega F., Hernando A., Gutiérrez A.

  45. Research Commentary on Recommendations with Side Information: A Survey and Research Directions. Electron. Commer. Res. Appl. 2019 paper bib

    Zhu Sun, Qing Guo, Jie Yang, Hui Fang, Guibing Guo, Jie Zhang, Robin Burke

  46. Self-Supervised Learning for Recommender Systems: A Survey. arXiv 2022 paper bib

    Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, Zi Huang

  47. Sequence-Aware Recommender Systems. ACM Comput. Surv. 2018 paper bib

    Massimo Quadrana, Paolo Cremonesi, Dietmar Jannach

  48. Sequential Recommender Systems: Challenges, Progress and Prospects. IJCAI 2019 paper bib

    Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z. Sheng, Mehmet A. Orgun

  49. Shilling attacks against recommender systems: a comprehensive survey. Artif. Intell. Rev. 2014 paper bib

    Ihsan Gunes, Cihan Kaleli, Alper Bilge, Huseyin Polat

  50. Social networking meets recommender systems: survey. Int. J. Soc. Netw. Min. 2015 paper bib

    Guandong Xu, Zhiang Wu, Yanchun Zhang, Jie Cao

  51. Social recommendation: a review. Soc. Netw. Anal. Min. 2013 paper bib

    Jiliang Tang, Xia Hu, Huan Liu

  52. Survey for Trust-aware Recommender Systems: A Deep Learning Perspective. arXiv 2020 paper bib

    Manqing Dong, Feng Yuan, Lina Yao, Xianzhi Wang, Xiwei Xu, Liming Zhu

  53. Tag-Aware Recommender Systems: A State-of-the-Art Survey. J. Comput. Sci. Technol. 2011 paper bib

    Zi-Ke Zhang, Tao Zhou, Yi-Cheng Zhang

  54. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 2005 paper bib

    Gediminas Adomavicius, Alexander Tuzhilin

  55. Use of Deep Learning in Modern Recommendation System: A Summary of Recent Works. arXiv 2017 paper bib

    Ayush Singhal, Pradeep Sinha, Rakesh Pant

Resources and Evaluation

  1. A Review of Human Evaluation for Style Transfer. arXiv 2021 paper bib

    Eleftheria Briakou, Sweta Agrawal, Ke Zhang, Joel R. Tetreault, Marine Carpuat

  2. A Short Survey on Sense-Annotated Corpora. LREC 2020 paper bib

    Tommaso Pasini, José Camacho-Collados

  3. A Survey of Current Datasets for Vision and Language Research. EMNLP 2015 paper bib

    Francis Ferraro, Nasrin Mostafazadeh, Ting-Hao (Kenneth) Huang, Lucy Vanderwende, Jacob Devlin, Michel Galley, Margaret Mitchell

  4. A Survey of Evaluation Metrics Used for NLG Systems. ACM Comput. Surv. 2023 paper bib

    Ananya B. Sai, Akash Kumar Mohankumar, Mitesh M. Khapra

  5. A Survey of Word Embeddings Evaluation Methods. arXiv 2018 paper bib

    Amir Bakarov

  6. A Survey on Recognizing Textual Entailment as an NLP Evaluation. arXiv 2020 paper bib

    Adam Poliak

  7. Beyond Counting Datasets: A Survey of Multilingual Dataset Construction and Necessary Resources. EMNLP 2022 paper bib

    Xinyan Yu, Trina Chatterjee, Akari Asai, Junjie Hu, Eunsol Choi

  8. Corpora Annotated with Negation: An Overview. Comput. Linguistics 2020 paper bib

    Salud María Jiménez Zafra, Roser Morante, María Teresa Martín-Valdivia, Luis Alfonso Ureña López

  9. Critical Survey of the Freely Available Arabic Corpora. arXiv 2017 paper bib

    Wajdi Zaghouani

  10. Efficient Methods for Natural Language Processing: A Survey. arXiv 2022 paper bib

    Marcos V. Treviso, Tianchu Ji, Ji-Ung Lee, Betty van Aken, Qingqing Cao, Manuel R. Ciosici, Michael Hassid, Kenneth Heafield, Sara Hooker, Pedro Henrique Martins, André F. T. Martins, Peter A. Milder, Colin Raffel, Edwin Simpson, Noam Slonim, Niranjan Balasubramanian, Leon Derczynski, Roy Schwartz

  11. Recent Advances in Natural Language Inference: A Survey of Benchmarks, Resources, and Approaches. arXiv 2019 paper bib

    Shane Storks, Qiaozi Gao, Joyce Y Chai

  12. Repairing the Cracked Foundation: A Survey of Obstacles in Evaluation Practices for Generated Text. arXiv 2022 paper bib

    Sebastian Gehrmann, Elizabeth Clark, Thibault Sellam

  13. Survey on Evaluation Methods for Dialogue Systems. Artif. Intell. Rev. 2021 paper bib

    Jan Deriu, Álvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset, Eneko Agirre, Mark Cieliebak

  14. Survey on Publicly Available Sinhala Natural Language Processing Tools and Research. arXiv 2019 paper bib

    Nisansa de Silva

  15. The Great Misalignment Problem in Human Evaluation of NLP Methods. arXiv 2021 paper bib

    Mika Hämäläinen, Khalid Al-Najjar

  16. Towards Standard Criteria for human evaluation of Chatbots: A Survey. arXiv 2021 paper bib

    Hongru Liang, Huaqing Li

Semantics

  1. A reproducible experimental survey on biomedical sentence similarity: a string-based method sets the state of the art. arXiv 2022 paper bib

    Alicia Lara-Clares, Juan J. Lastra-Díaz, Ana García-Serrano

  2. A reproducible survey on word embeddings and ontology-based methods for word similarity: Linear combinations outperform the state of the art. Eng. Appl. Artif. Intell. 2019 paper bib

    Juan J. Lastra-Díaz, Josu Goikoetxea, Mohamed Ali Hadj Taieb, Ana García-Serrano, Mohamed Ben Aouicha, Eneko Agirre

  3. A survey of loss functions for semantic segmentation. CIBCB 2020 paper bib

    Shruti Jadon

  4. A Survey of Paraphrasing and Textual Entailment Methods. J. Artif. Intell. Res. 2010 paper bib

    Ion Androutsopoulos, Prodromos Malakasiotis

  5. A Survey of Syntactic-Semantic Parsing Based on Constituent and Dependency Structures. arXiv 2020 paper bib

    Meishan Zhang

  6. A Survey on Semantic Parsing. AKBC 2019 paper bib

    Aishwarya Kamath, Rajarshi Das

  7. Argument Linking: A Survey and Forecast. arXiv 2021 paper bib

    William Gantt

  8. Corpus-Based Paraphrase Detection Experiments and Review. Inf. 2020 paper bib

    Tedo Vrbanec, Ana Mestrovic

  9. Diachronic word embeddings and semantic shifts: a survey. COLING 2018 paper bib

    Andrey Kutuzov, Lilja Øvrelid, Terrence Szymanski, Erik Velldal

  10. Distributional Measures of Semantic Distance: A Survey. arXiv 2012 paper bib

    Saif M. Mohammad, Graeme Hirst

  11. Evolution of Semantic Similarity - A Survey. ACM Comput. Surv. 2022 paper bib

    Dhivya Chandrasekaran, Vijay Mago

  12. Measuring Sentences Similarity: A Survey. arXiv 2019 paper bib

    Mamdouh Farouk

  13. Semantic search on text and knowledge bases. Found. Trends Inf. Retr. 2016 paper bib

    Hannah Bast, Björn Buchhold, Elmar Haussmann

  14. Semantics, Modelling, and the Problem of Representation of Meaning - a Brief Survey of Recent Literature. arXiv 2014 paper bib

    Yarin Gal

  15. Survey of Computational Approaches to Lexical Semantic Change. arXiv 2018 paper bib

    Nina Tahmasebi, Lars Borin, Adam Jatowt

  16. The Knowledge Acquisition Bottleneck Problem in Multilingual Word Sense Disambiguation. IJCAI 2020 paper bib

    Tommaso Pasini

  17. Word sense disambiguation: a survey. IJCTCM 2015 paper bib

    Alok Ranjan Pal, Diganta Saha

  18. Word Sense disambiguation: A Survey. ACM Comput. Surv. 2009 paper bib

    Roberto Navigli

Sentiment Analysis, Stylistic Analysis and Argument Mining

  1. 360 degree view of cross-domain opinion classification: a survey. Artif. Intell. Rev. 2021 paper bib

    Rahul Kumar Singh, Manoj Kumar Sachan, R. B. Patel

  2. A Comprehensive Survey on Aspect Based Sentiment Analysis. arXiv 2020 paper bib

    Kaustubh Yadav

  3. A Survey of Sentiment Analysis in Social Media. Knowl. Inf. Syst. 2019 paper bib

    Lin Yue, Weitong Chen, Xue Li, Wanli Zuo, Minghao Yin

  4. A Survey On Semantic Steganography Systems. arXiv 2022 paper bib

    João Figueira

  5. A Survey on Sentiment and Emotion Analysis for Computational Literary Studies. arXiv 2018 paper bib

    Evgeny Kim, Roman Klinger

  6. Automatic Sarcasm Detection: A Survey. ACM Comput. Surv. 2017 paper bib

    Aditya Joshi, Pushpak Bhattacharyya, Mark James Carman

  7. Beneath the Tip of the Iceberg: Current Challenges and New Directions in Sentiment Analysis Research. arXiv 2020 paper bib

    Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Rada Mihalcea

  8. Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges. IEEE Access 2019 paper bib

    Jie Zhou, Jimmy Xiangji Huang, Qin Chen, Qinmin Vivian Hu, Tingting Wang, Liang He

  9. Deep Learning for Sentiment Analysis : A Survey. arXiv 2018 paper bib

    Lei Zhang, Shuai Wang, Bing Liu

  10. Emotion Recognition in Conversation: Research Challenges, Datasets, and Recent Advances. IEEE Access 2019 paper bib

    Soujanya Poria, Navonil Majumder, Rada Mihalcea, Eduard H. Hovy

  11. Fine-grained Financial Opinion Mining: A Survey and Research Agenda. arXiv 2020 paper bib

    Chung-Chi Chen, Hen-Hsen Huang, Hsin-Hsi Chen

  12. On Positivity Bias in Negative Reviews. ACL 2021 paper bib

    Madhusudhan Aithal, Chenhao Tan

  13. Sarcasm Detection: A Comparative Study. arXiv 2021 paper bib

    Hamed Yaghoobian, Hamid R. Arabnia, Khaled Rasheed

  14. Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal 2014 paper bib

    Walaa Medhat, Ahmed Hassan, Hoda Korashy

  15. Sentiment analysis for Arabic language: A brief survey of approaches and techniques. arXiv 2018 paper bib

    Mo'ath Alrefai, Hossam Faris, Ibrahim Aljarah

  16. Sentiment Analysis of Czech Texts: An Algorithmic Survey. ICAART 2019 paper bib

    Erion Çano, Ondrej Bojar

  17. Sentiment Analysis of Twitter Data: A Survey of Techniques. IJCAI 2016 paper bib

    Vishal.A.Kharde, Prof. Sheetal.Sonawane

  18. Sentiment Analysis on YouTube: A Brief Survey. arXiv 2015 paper bib

    Muhammad Zubair Asghar, Shakeel Ahmad, Afsana Marwat, Fazal Masood Kundi

  19. Sentiment/Subjectivity Analysis Survey for Languages other than English. Soc. Netw. Anal. Min. 2016 paper bib

    Mohammed Korayem, Khalifeh AlJadda, David J. Crandall

  20. Survey of Aspect-based Sentiment Analysis Datasets. arXiv 2022 paper bib

    Siva Uday Sampreeth Chebolu, Franck Dernoncourt, Nedim Lipka, Thamar Solorio

  21. Towards Argument Mining for Social Good: A Survey. ACL 2021 paper bib

    Eva Maria Vecchi, Neele Falk, Iman Jundi, Gabriella Lapesa

  22. Word Embeddings for Sentiment Analysis: A Comprehensive Empirical Survey. arXiv 2019 paper bib

    Erion Çano, Maurizio Morisio

Speech and Multimodality

  1. A Comparative Analysis of Techniques and Algorithms for Recognising Sign Language. arXiv 2023 paper bib

    Rupesh Kumar, Ayush Sinha, Ashutosh Bajpai, S. K Singh

  2. A Comprehensive Survey on Cross-modal Retrieval. arXiv 2016 paper bib

    Kaiye Wang, Qiyue Yin, Wei Wang, Shu Wu, Liang Wang

  3. A Multimodal Memes Classification: A Survey and Open Research Issues. arXiv 2020 paper bib

    Tariq Habib Afridi, Aftab Alam, Muhammad Numan Khan, Jawad Khan, Young-Koo Lee

  4. A Survey : Neural Networks for AMR-to-Text. arXiv 2022 paper bib

    Hongyu Hao, Guangtong Li, Zhiming Hu, Huafeng Wang

  5. A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis. WIREs Data Mining Knowl. Discov. 2020 paper bib

    Jorge Agnese, Jonathan Herrera, Haicheng Tao, Xingquan Zhu

  6. A Survey of Code-switched Speech and Language Processing. arXiv 2019 paper bib

    Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Krishna Rallabandi, Alan W. Black

  7. A Survey of Deep Learning Approaches for OCR and Document Understanding. arXiv 2020 paper bib

    Nishant Subramani, Alexandre Matton, Malcolm Greaves, Adrian Lam

  8. A Survey of Recent DNN Architectures on the TIMIT Phone Recognition Task. TSD 2018 paper bib

    Josef Michálek, Jan Vanek

  9. A Survey of Vision-Language Pre-Trained Models. IJCAI 2022 paper bib

    Yifan Du, Zikang Liu, Junyi Li, Wayne Xin Zhao

  10. A Survey of Voice Translation Methodologies - Acoustic Dialect Decoder. arXiv 2016 paper bib

    Hans Krupakar, Keerthika Rajvel, Bharathi B, Angel Deborah S, Vallidevi Krishnamurthy

  11. A Survey on Neural Speech Synthesis. arXiv 2021 paper bib

    Xu Tan, Tao Qin, Frank K. Soong, Tie-Yan Liu

  12. A Survey on Spoken Language Understanding: Recent Advances and New Frontiers. IJCAI 2021 paper bib

    Libo Qin, Tianbao Xie, Wanxiang Che, Ting Liu

  13. A Thorough Review on Recent Deep Learning Methodologies for Image Captioning. arXiv 2021 paper bib

    Ahmed Elhagry, Karima Kadaoui

  14. Accented Speech Recognition: A Survey. arXiv 2021 paper bib

    Arthur Hinsvark, Natalie Delworth, Miguel Del Rio, Quinten McNamara, Joshua Dong, Ryan Westerman, Michelle Huang, Joseph Palakapilly, Jennifer Drexler, Ilya Pirkin, Nishchal Bhandari, Miguel Jette

  15. Automatic Description Generation from Images: A Survey of Models, Datasets, and Evaluation Measures. J. Artif. Intell. Res. 2016 paper bib

    Raffaella Bernardi, Ruket Çakici, Desmond Elliott, Aykut Erdem, Erkut Erdem, Nazli Ikizler-Cinbis, Frank Keller, Adrian Muscat, Barbara Plank

  16. Automatic Speech Recognition And Limited Vocabulary: A Survey. arXiv 2021 paper bib

    Jean Louis K. E. Fendji, Diane C. M. Tala, Blaise O. Yenke, Marcellin Atemkeng

  17. Deep Emotion Recognition in Dynamic Data using Facial, Speech and Textual Cues: A Survey. TechRxiv 2021 paper bib

    Tao ZhangTao Zhang, Zhenhua Tan

  18. Image Captioning based on Deep Learning Methods: A Survey. arXiv 2019 paper bib

    Yiyu Wang, Jungang Xu, Yingfei Sun, Ben He

  19. Learning in Audio-visual Context: A Review, Analysis, and New Perspective. arXiv 2022 paper bib

    Yake Wei, Di Hu, Yapeng Tian, Xuelong Li

  20. Multimodal Intelligence: Representation Learning, Information Fusion, and Applications. IEEE J. Sel. Top. Signal Process. 2020 paper bib

    Chao Zhang, Zichao Yang, Xiaodong He, Li Deng

  21. Multimodal Learning with Transformers: A Survey. arXiv 2022 paper bib

    Peng Xu, Xiatian Zhu, David A. Clifton

  22. Multimodal Machine Learning: A Survey and Taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2019 paper bib

    Tadas Baltrusaitis, Chaitanya Ahuja, Louis-Philippe Morency

  23. Perspectives and Prospects on Transformer Architecture for Cross-Modal Tasks with Language and Vision. Int. J. Comput. Vis. 2022 paper bib

    Andrew Shin, Masato Ishii, Takuya Narihira

  24. Reasoning about Actions over Visual and Linguistic Modalities: A Survey. arXiv 2022 paper bib

    Shailaja Keyur Sampat, Maitreya Patel, Subhasish Das, Yezhou Yang, Chitta Baral

  25. Recent Advances and Trends in Multimodal Deep Learning: A Review. arXiv 2021 paper bib

    Jabeen Summaira, Xi Li, Amin Muhammad Shoib, Songyuan Li, Jabbar Abdul

  26. Referring Expression Comprehension: A Survey of Methods and Datasets. IEEE Trans. Multim. 2021 paper bib

    Yanyuan Qiao, Chaorui Deng, Qi Wu

  27. Review of end-to-end speech synthesis technology based on deep learning. arXiv 2021 paper bib

    Zhaoxi Mu, Xinyu Yang, Yizhuo Dong

  28. Speech and Language Processing. Stanford 2019 paper bib

    Dan Jurafsky, James H. Martin

  29. Survey: Transformer based Video-Language Pre-training. AI Open 2022 paper bib

    Ludan Ruan, Qin Jin

  30. Text Detection and Recognition in the Wild: A Review. arXiv 2020 paper bib

    Zobeir Raisi, Mohamed A. Naiel, Paul W. Fieguth, Steven Wardell, John S. Zelek

  31. Text Recognition in the Wild: A Survey. ACM Comput. Surv. 2022 paper bib

    Xiaoxue Chen, Lianwen Jin, Yuanzhi Zhu, Canjie Luo, Tianwei Wang

  32. Thank you for Attention: A survey on Attention-based Artificial Neural Networks for Automatic Speech Recognition. arXiv 2021 paper bib

    Priyabrata Karmakar, Shyh Wei Teng, Guojun Lu

  33. Unsupervised Automatic Speech Recognition: A Review. arXiv 2021 paper bib

    Hanan Aldarmaki, Asad Ullah, Nazar Zaki

  34. Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. ICLR 2022 paper bib

    Bo Wan, Wenjuan Han, Zilong Zheng, Tinne Tuytelaars

  35. Vision + Language Applications: A Survey. arXiv 2023 paper bib

    Yutong Zhou, Nobutaka Shimada

  36. Vision-and-Language Navigation: A Survey of Tasks, Methods, and Future Directions. ACL 2022 paper bib

    Jing Gu, Eliana Stefani, Qi Wu, Jesse Thomason, Xin Wang

  37. Visual Question Answering: A Survey of Methods and Datasets. Comput. Vis. Image Underst. 2017 paper bib

    Qi Wu, Damien Teney, Peng Wang, Chunhua Shen, Anthony R. Dick, Anton van den Hengel

  38. Visual Question Answering: Datasets, Algorithms, and Future Challenges. Comput. Vis. Image Underst. 2017 paper bib

    Kushal Kafle, Christopher Kanan

  39. VLP: A Survey on Vision-Language Pre-training. Int. J. Autom. Comput. 2023 paper bib

    Feilong Chen, Duzhen Zhang, Minglun Han, Xiu-Yi Chen, Jing Shi, Shuang Xu, Bo Xu

Summarization

  1. A Survey of the State-of-the-Art Models in Neural Abstractive Text Summarization. IEEE Access 2021 paper bib

    Ayesha Ayub Syed, Ford Lumban Gaol, Tokuro Matsuo

  2. A Survey on Cross-Lingual Summarization. Trans. Assoc. Comput. Linguistics 2022 paper bib

    Jiaan Wang, Fandong Meng, Duo Zheng, Yunlong Liang, Zhixu Li, Jianfeng Qu, Jie Zhou

  3. A Survey on Dialogue Summarization: Recent Advances and New Frontiers. IJCAI 2022 paper bib

    Xiachong Feng, Xiaocheng Feng, Bing Qin

  4. A Survey on Neural Network-Based Summarization Methods. arXiv 2018 paper bib

    Yue Dong

  5. Abstractive Meeting Summarization: A Survey. arXiv 2022 paper bib

    Virgile Rennard, Guokan Shang, Julie Hunter, Michalis Vazirgiannis

  6. Abstractive Summarization: A Survey of the State of the Art. AAAI 2019 paper bib

    Hui Lin, Vincent Ng

  7. Automated text summarisation and evidence-based medicine: A survey of two domains. arXiv 2017 paper bib

    Abeed Sarker, Diego Mollá Aliod, Cécile Paris

  8. Automatic Keyword Extraction for Text Summarization: A Survey. arXiv 2017 paper bib

    Santosh Kumar Bharti, Korra Sathya Babu

  9. Automatic summarization of scientific articles: A survey. J. King Saud Univ. Comput. Inf. Sci. 2022 paper bib

    Nouf Ibrahim Altmami, Mohamed El Bachir Menai

  10. Deep Learning Based Abstractive Text Summarization: Approaches, Datasets, Evaluation Measures, and Challenges. Mathematical Problems in Engineering 2020 paper bib

    Dima Suleiman, Arafat Awajan

  11. From Standard Summarization to New Tasks and Beyond: Summarization with Manifold Information. IJCAI 2020 paper bib

    Shen Gao, Xiuying Chen, Zhaochun Ren, Dongyan Zhao, Rui Yan

  12. How to Evaluate a Summarizer: Study Design and Statistical Analysis for Manual Linguistic Quality Evaluation. EACL 2021 paper bib

    Julius Steen, Katja Markert

  13. Knowledge-aware Document Summarization: A Survey of Knowledge, Embedding Methods and Architectures. Knowl. Based Syst. 2022 paper bib

    Yutong Qu, Wei Emma Zhang, Jian Yang, Lingfei Wu, Jia Wu

  14. Multi-document Summarization via Deep Learning Techniques: A Survey. ACM Comput. Surv. 2023 paper bib

    Congbo Ma, Wei Emma Zhang, Mingyu Guo, Hu Wang, Quan Z. Sheng

  15. Neural Abstractive Text Summarization with Sequence-to-Sequence Models. Trans. Data Sci. 2021 paper bib

    Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, Chandan K. Reddy

  16. Recent automatic text summarization techniques: a survey. Artif. Intell. Rev. 2017 paper bib

    Mahak Gambhir, Vishal Gupta

  17. Text Summarization Techniques: A Brief Survey. arXiv 2017 paper bib

    Mehdi Allahyari, Seyed Amin Pouriyeh, Mehdi Assefi, Saeid Safaei, Elizabeth D. Trippe, Juan B. Gutierrez, Krys J. Kochut

  18. The Factual Inconsistency Problem in Abstractive Text Summarization: A Survey. arXiv 2021 paper bib

    Yi-Chong Huang, Xia-Chong Feng, Xiao-Cheng Feng, Bing Qin

  19. What Have We Achieved on Text Summarization?. EMNLP 2020 paper bib

    Dandan Huang, Leyang Cui, Sen Yang, Guangsheng Bao, Kun Wang, Jun Xie, Yue Zhang

Tagging, Chunking, Syntax and Parsing

  1. A survey of cross-lingual features for zero-shot cross-lingual semantic parsing. arXiv 2019 paper bib

    Jingfeng Yang, Federico Fancellu, Bonnie L. Webber

  2. A Survey of Syntactic-Semantic Parsing Based on Constituent and Dependency Structures. arXiv 2020 paper bib

    Meishan Zhang

  3. A Survey on Recent Advances in Sequence Labeling from Deep Learning Models. arXiv 2020 paper bib

    Zhiyong He, Zanbo Wang, Wei Wei, Shanshan Feng, Xianling Mao, Sheng Jiang

  4. A Survey on Semantic Parsing. AKBC 2019 paper bib

    Aishwarya Kamath, Rajarshi Das

  5. A Survey on Semantic Parsing from the perspective of Compositionality. arXiv 2020 paper bib

    Pawan Kumar, Srikanta Bedathur

  6. A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future Directions. arXiv 2022 paper bib

    Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao, Jian Sun, Luo Si, Fei Huang, Yongbin Li

  7. Context Dependent Semantic Parsing: A Survey. COLING 2020 paper bib

    Zhuang Li, Lizhen Qu, Gholamreza Haffari

  8. Design Challenges and Misconceptions in Neural Sequence Labeling. COLING 2018 paper bib

    Jie Yang, Shuailong Liang, Yue Zhang

  9. Part‐of‐speech tagging. Wiley Interdisciplinary Reviews: Computational Statistics 2011 paper bib

    Angel R. Martinez

  10. Sememe knowledge computation: a review of recent advances in application and expansion of sememe knowledge bases. Frontiers Comput. Sci. 2021 paper bib

    Fanchao Qi, Ruobing Xie, Yuan Zang, Zhiyuan Liu, Maosong Sun

  11. Syntactic Parsing: A Survey. Computers and the Humanities 1989 paper bib

    Alton F. Sanders and Ruth H. Sanders

  12. Syntax Representation in Word Embeddings and Neural Networks - A Survey. ITAT 2020 paper bib

    Tomasz Limisiewicz, David Marecek

  13. The Gap of Semantic Parsing: A Survey on Automatic Math Word Problem Solvers. IEEE Trans. Pattern Anal. Mach. Intell. 2020 paper bib

    Dongxiang Zhang, Lei Wang, Luming Zhang, Bing Tian Dai, Heng Tao Shen

Text Classification

  1. A Survey of Active Learning for Text Classification using Deep Neural Networks. arXiv 2020 paper bib

    Christopher Schröder, Andreas Niekler

  2. A Survey of Naïve Bayes Machine Learning approach in Text Document Classification. arXiv 2010 paper bib

    K. A. Vidhya, G. Aghila

  3. A Survey on Data Augmentation for Text Classification. ACM Comput. Surv. 2023 paper bib

    Markus Bayer, Marc-André Kaufhold, Christian Reuter

  4. A Survey on Natural Language Processing for Fake News Detection. LREC 2020 paper bib

    Ray Oshikawa, Jing Qian, William Yang Wang

  5. A survey on phrase structure learning methods for text classification. arXiv 2014 paper bib

    Reshma Prasad, Mary Priya Sebastian

  6. A Survey on Stance Detection for Mis- and Disinformation Identification. NAACL-HLT 2022 paper bib

    Momchil Hardalov, Arnav Arora, Preslav Nakov, Isabelle Augenstein

  7. A Survey on Text Classification: From Shallow to Deep Learning. arXiv 2020 paper bib

    Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip S. Yu, Lifang He

  8. Automatic Language Identification in Texts: A Survey. J. Artif. Intell. Res. 2019 paper bib

    Tommi Jauhiainen, Marco Lui, Marcos Zampieri, Timothy Baldwin, Krister Lindén

  9. Deep Learning-based Text Classification: A Comprehensive Review. ACM Comput. Surv. 2022 paper bib

    Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam Chenaghlu, Jianfeng Gao

  10. Fake News Detection using Stance Classification: A Survey. arXiv 2019 paper bib

    Anders Edelbo Lillie, Emil Refsgaard Middelboe

  11. Out-of-Distribution Generalization in Text Classification: Past, Present, and Future. arXiv 2023 paper bib

    Linyi Yang, Yaoxiao Song, Xuan Ren, Chenyang Lyu, Yidong Wang, Lingqiao Liu, Jindong Wang, Jennifer Foster, Yue Zhang

  12. Semantic text classification: A survey of past and recent advances. Inf. Process. Manag. 2018 paper bib

    Berna Altinel, Murat Can Ganiz

  13. Text Classification Algorithms: A Survey. Inf. 2019 paper bib

    Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu, Laura E. Barnes, Donald E. Brown

The ML Paper List

Architectures

  1. A General Survey on Attention Mechanisms in Deep Learning. arXiv 2022 paper bib

    Gianni Brauwers, Flavius Frasincar

  2. A Practical Survey on Faster and Lighter Transformers. arXiv 2021 paper bib

    Quentin Fournier, Gaétan Marceau Caron, Daniel Aloise

  3. A Review of Binarized Neural Networks. Electronics 2019 paper bib

    Taylor Simons, Dah-Jye Lee

  4. A Review of Sparse Expert Models in Deep Learning. arXiv 2022 paper bib

    William Fedus, Jeff Dean, Barret Zoph

  5. A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics 2019 paper bib

    Md Zahangir Alom, Tarek M. Taha, Chris Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Mahmudul Hasan, Brian C. Van Essen, Abdul A. S. Awwal and Vijayan K. Asari

  6. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. arXiv 2020 paper bib

    Zewen Li, Wenjie Yang, Shouheng Peng, Fan Liu

  7. A Survey of End-to-End Driving: Architectures and Training Methods. arXiv 2020 paper bib

    Ardi Tampuu, Maksym Semikin, Naveed Muhammad, Dmytro Fishman, Tambet Matiisen

  8. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020 paper bib

    Asifullah Khan, Anabia Sohail, Umme Zahoora, Aqsa Saeed Qureshi

  9. A Survey of Transformers. AI Open 2022 paper bib

    Tianyang Lin, Yuxin Wang, Xiangyang Liu, Xipeng Qiu

  10. A Survey on Activation Functions and their relation with Xavier and He Normal Initialization. arXiv 2020 paper bib

    Leonid Datta

  11. A Survey on Latent Tree Models and Applications. J. Artif. Intell. Res. 2013 paper bib

    Raphaël Mourad, Christine Sinoquet, Nevin Lianwen Zhang, Tengfei Liu, Philippe Leray

  12. A survey on modern trainable activation functions. Neural Networks 2021 paper bib

    Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, Roberto Prevete

  13. A Survey on Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2023 paper bib

    Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, Zhaohui Yang, Yiman Zhang, Dacheng Tao

  14. An Attentive Survey of Attention Models. ACM Trans. Intell. Syst. Technol. 2021 paper bib

    Sneha Chaudhari, Varun Mithal, Gungor Polatkan, Rohan Ramanath

  15. An Introduction to Autoencoders. arXiv 2022 paper bib

    Umberto Michelucci

  16. Attention mechanisms and deep learning for machine vision: A survey of the state of the art. arXiv 2021 paper bib

    Abdul Mueed Hafiz, Shabir Ahmad Parah, Rouf Ul Alam Bhat

  17. Attention Mechanisms in Computer Vision: A Survey. Comput. Vis. Media 2022 paper bib

    Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao Jiang, Tai-Jiang Mu, Song-Hai Zhang, Ralph R. Martin, Ming-Ming Cheng, Shi-Min Hu

  18. Big Networks: A Survey. Comput. Sci. Rev. 2020 paper bib

    Hayat Dino Bedru, Shuo Yu, Xinru Xiao, Da Zhang, Liangtian Wan, He Guo, Feng Xia

  19. Binary Neural Networks: A Survey. Pattern Recognit. 2020 paper bib

    Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, Nicu Sebe

  20. Deep Echo State Network (DeepESN): A Brief Survey. arXiv 2017 paper bib

    Claudio Gallicchio, Alessio Micheli

  21. Deep Tree Transductions - A Short Survey. INNSBDDL 2019 paper bib

    Davide Bacciu, Antonio Bruno

  22. Efficient Transformers: A Survey. ACM Comput. Surv. 2023 paper bib

    Yi Tay, Mostafa Dehghani, Dara Bahri, Donald Metzler

  23. Learning with Capsules: A Survey. arXiv 2022 paper bib

    Fabio De Sousa Ribeiro, Kevin Duarte, Miles Everett, Georgios Leontidis, Mubarak Shah

  24. On the Opportunity of Causal Deep Generative Models: A Survey and Future Directions. arXiv 2023 paper bib

    Guanglin Zhou, Lina Yao, Xiwei Xu, Chen Wang, Liming Zhu, Kun Zhang

  25. Pooling Methods in Deep Neural Networks, a Review. arXiv 2020 paper bib

    Hossein Gholamalinezhad, Hossein Khosravi

  26. Position Information in Transformers: An Overview. Comput. Linguistics 2022 paper bib

    Philipp Dufter, Martin Schmitt, Hinrich Schütze

  27. Recent Advances in Convolutional Neural Networks. Pattern Recognit. 2018 paper bib

    Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, Tsuhan Chen

  28. Sum-Product Networks: A Survey. arXiv 2020 paper bib

    Iago París, Raquel Sánchez-Cauce, Francisco Javier Díez

  29. Survey of Dropout Methods for Deep Neural Networks. arXiv 2019 paper bib

    Alex Labach, Hojjat Salehinejad, Shahrokh Valaee

  30. Survey on the attention based RNN model and its applications in computer vision. arXiv 2016 paper bib

    Feng Wang, David M. J. Tax

  31. The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches. arXiv 2018 paper bib

    Md. Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Brian C. Van Essen, Abdul A. S. Awwal, Vijayan K. Asari

  32. The NLP Cookbook: Modern Recipes for Transformer based Deep Learning Architectures. IEEE Access 2021 paper bib

    Sushant Singh, Ausif Mahmood

  33. Transformers in Vision: A Survey. ACM Comput. Surv. 2022 paper bib

    Salman H. Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, Mubarak Shah

  34. Understanding LSTM - a tutorial into Long Short-Term Memory Recurrent Neural Networks. arXiv 2019 paper bib

    Ralf C. Staudemeyer, Eric Rothstein Morris

AutoML

  1. A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions. ACM Comput. Surv. 2022 paper bib

    Pengzhen Ren, Yun Xiao, Xiaojun Chang, Poyao Huang, Zhihui Li, Xiaojiang Chen, Xin Wang

  2. A Comprehensive Survey on Automated Machine Learning for Recommendations. arXiv 2022 paper bib

    Bo Chen, Xiangyu Zhao, Yejing Wang, Wenqi Fan, Huifeng Guo, Ruiming Tang

  3. A Comprehensive Survey on Hardware-Aware Neural Architecture Search. arXiv 2021 paper bib

    Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smaïl Niar, Martin Wistuba, Naigang Wang

  4. A Review of Meta-Reinforcement Learning for Deep Neural Networks Architecture Search. arXiv 2018 paper bib

    Yesmina Jaâfra, Jean Luc Laurent, Aline Deruyver, Mohamed Saber Naceur

  5. A Survey on Neural Architecture Search. arXiv 2019 paper bib

    Martin Wistuba, Ambrish Rawat, Tejaswini Pedapati

  6. Automated Machine Learning on Graphs: A Survey. IJCAI 2021 paper bib

    Ziwei Zhang, Xin Wang, Wenwu Zhu

  7. AutoML for Deep Recommender Systems: A Survey. arXiv 2022 paper bib

    Ruiqi Zheng, Liang Qu, Bin Cui, Yuhui Shi, Hongzhi Yin

  8. AutoML: A Survey of the State-of-the-Art. Knowl. Based Syst. 2021 paper bib

    Xin He, Kaiyong Zhao, Xiaowen Chu

  9. Benchmark and Survey of Automated Machine Learning Frameworks. J. Artif. Intell. Res. 2021 paper bib

    Marc-André Zöller, Marco F. Huber

  10. Neural Architecture Search: A Survey. J. Mach. Learn. Res. 2019 paper bib

    Thomas Elsken, Jan Hendrik Metzen, Frank Hutter

  11. Reinforcement learning for neural architecture search: A review. Image Vis. Comput. 2019 paper bib

    Yesmina Jaâfra, Jean Luc Laurent, Aline Deruyver, Mohamed Saber Naceur

  12. Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications and Open Issues. arXiv 2022 paper bib

    Nan Li, Lianbo Ma, Guo Yu, Bing Xue, Mengjie Zhang, Yaochu Jin

Bayesian Methods

  1. A survey of non-exchangeable priors for Bayesian nonparametric models. IEEE Trans. Pattern Anal. Mach. Intell. 2015 paper bib

    Nicholas J. Foti, Sinead A. Williamson

  2. A Survey on Bayesian Deep Learning. ACM Comput. Surv. 2021 paper bib

    Hao Wang, Dit-Yan Yeung

  3. Bayesian Neural Networks: An Introduction and Survey. arXiv 2020 paper bib

    Ethan Goan, Clinton Fookes

  4. Bayesian Nonparametric Space Partitions: A Survey. IJCAI 2021 paper bib

    Xuhui Fan, Bin Li, Ling Luo, Scott A. Sisson

  5. Deep Bayesian Active Learning, A Brief Survey on Recent Advances. arXiv 2020 paper bib

    Salman Mohamadi, Hamidreza Amindavar

  6. Hands-on Bayesian Neural Networks - a Tutorial for Deep Learning Users. arXiv 2020 paper bib

    Laurent Valentin Jospin, Wray L. Buntine, Farid Boussaïd, Hamid Laga, Mohammed Bennamoun

  7. Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 2016 paper bib

    Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, Nando de Freitas

Classification, Clustering and Regression

  1. A continual learning survey: Defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. 2022 paper bib

    Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Gregory G. Slabaugh, Tinne Tuytelaars

  2. A Survey of Classification Techniques in the Area of Big Data. arXiv 2015 paper bib

    Praful Koturwar, Sheetal Girase, Debajyoti Mukhopadhyay

  3. A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges. arXiv 2020 paper bib

    Laura P. Swiler, Mamikon Gulian, Ari Frankel, Cosmin Safta, John D. Jakeman

  4. A Survey of Deep Graph Clustering: Taxonomy, Challenge, and Application. arXiv 2022 paper bib

    Yue Liu, Jun Xia, Sihang Zhou, Siwei Wang, Xifeng Guo, Xihong Yang, Ke Liang, Wenxuan Tu, Stan Z. Li, Xinwang Liu

  5. A Survey of Machine Learning Methods and Challenges for Windows Malware Classification. arXiv 2020 paper bib

    Edward Raff, Charles Nicholas

  6. A Survey of Methods for Managing the Classification and Solution of Data Imbalance Problem. arXiv 2020 paper bib

    Khan Md. Hasib, Md. Sadiq Iqbal, Faisal Muhammad Shah, Jubayer Al Mahmud, Mahmudul Hasan Popel, Md. Imran Hossain Showrov, Shakil Ahmed, Obaidur Rahman

  7. A Survey of Techniques All Classifiers Can Learn from Deep Networks: Models, Optimizations, and Regularization. arXiv 2019 paper bib

    Alireza Ghods, Diane J. Cook

  8. A Survey on Multi-View Clustering. arXiv 2017 paper bib

    Guoqing Chao, Shiliang Sun, Jinbo Bi

  9. Comprehensive Comparative Study of Multi-Label Classification Methods. Expert Syst. Appl. 2022 paper bib

    Jasmin Bogatinovski, Ljupco Todorovski, Saso Dzeroski, Dragi Kocev

  10. Deep Clustering: A Comprehensive Survey. arXiv 2022 paper bib

    Yazhou Ren, Jingyu Pu, Zhimeng Yang, Jie Xu, Guofeng Li, Xiaorong Pu, Philip S. Yu, Lifang He

  11. Deep learning for time series classification: a review. Data Min. Knowl. Discov. 2019 paper bib

    Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, Pierre-Alain Muller

  12. How Complex is your classification problem? A survey on measuring classification complexity. arXiv 2018 paper bib

    Ana Carolina Lorena, Luís Paulo F. Garcia, Jens Lehmann, Marcilio C. P. de Souto, Tin Kam Ho

Computer Vision

  1. 3D Human Motion Prediction: A Survey. Neurocomputing 2022 paper bib

    Kedi Lyu, Haipeng Chen, Zhenguang Liu, Beiqi Zhang, Ruili Wang

  2. 3D Object Detection for Autonomous Driving: A Survey. Pattern Recognit. 2022 paper bib

    Rui Qian, Xin Lai, Xirong Li

  3. 3D Object Detection from Images for Autonomous Driving: A Survey. arXiv 2022 paper bib

    Xinzhu Ma, Wanli Ouyang, Andrea Simonelli, Elisa Ricci

  4. 3D Vision with Transformers: A Survey. arXiv 2022 paper bib

    Jean Lahoud, Jiale Cao, Fahad Shahbaz Khan, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan, Ming-Hsuan Yang

  5. A Survey of Automated Data Augmentation Algorithms for Deep Learning-based Image Classification Tasks. arXiv 2022 paper bib

    Zihan Yang, Richard O. Sinnott, James Bailey, Qiuhong Ke

  6. A Survey of Black-Box Adversarial Attacks on Computer Vision Models. arXiv 2019 paper bib

    Siddhant Bhambri, Sumanyu Muku, Avinash Tulasi, Arun Balaji Buduru

  7. A Survey of Deep Face Restoration: Denoise, Super-Resolution, Deblur, Artifact Removal. arXiv 2022 paper bib

    Tao Wang, Kaihao Zhang, Xuanxi Chen, Wenhan Luo, Jiankang Deng, Tong Lu, Xiaochun Cao, Wei Liu, Hongdong Li, Stefanos Zafeiriou

  8. A survey of loss functions for semantic segmentation. CIBCB 2020 paper bib

    Shruti Jadon

  9. A Survey of Modern Deep Learning based Object Detection Models. Digit. Signal Process. 2022 paper bib

    Syed Sahil Abbas Zaidi, Mohammad Samar Ansari, Asra Aslam, Nadia Kanwal, Mamoona Naveed Asghar, Brian Lee

  10. A survey of top-down approaches for human pose estimation. arXiv 2022 paper bib

    Thong Duy Nguyen, Milan Kresovic

  11. A Survey of Vision-Language Pre-Trained Models. IJCAI 2022 paper bib

    Yifan Du, Zikang Liu, Junyi Li, Wayne Xin Zhao

  12. A Survey of Visual Sensory Anomaly Detection. arXiv 2022 paper bib

    Xi Jiang, Guoyang Xie, Jinbao Wang, Yong Liu, Chengjie Wang, Feng Zheng, Yaochu Jin

  13. A Survey of Visual Transformers. arXiv 2021 paper bib

    Yang Liu, Yao Zhang, Yixin Wang, Feng Hou, Jin Yuan, Jiang Tian, Yang Zhang, Zhongchao Shi, Jianping Fan, Zhiqiang He

  14. A survey on applications of augmented, mixed and virtual reality for nature and environment. HCI 2021 paper bib

    Jason R. Rambach, Gergana Lilligreen, Alexander Schäfer, Ramya Bankanal, Alexander Wiebel, Didier Stricker

  15. A survey on deep hashing for image retrieval. arXiv 2020 paper bib

    Xiaopeng Zhang

  16. A Survey on Deep Learning in Medical Image Analysis. Medical Image Anal. 2017 paper bib

    Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A. W. M. van der Laak, Bram van Ginneken, Clara I. Sánchez

  17. A Survey on Deep Learning Technique for Video Segmentation. arXiv 2021 paper bib

    Wenguan Wang, Tianfei Zhou, Fatih Porikli, David J. Crandall, Luc Van Gool

  18. A Survey on Graph Neural Networks and Graph Transformers in Computer Vision: A Task-Oriented Perspective. arXiv 2022 paper bib

    Chaoqi Chen, Yushuang Wu, Qiyuan Dai, Hong-Yu Zhou, Mutian Xu, Sibei Yang, Xiaoguang Han, Yizhou Yu

  19. A Survey on Label-efficient Deep Image Segmentation: Bridging the Gap between Weak Supervision and Dense Prediction. IEEE Trans. Pattern Anal. Mach. Intell. 2022 paper bib

    Wei Shen, Zelin Peng, Xuehui Wang, Huayu Wang, Jiazhong Cen, Dongsheng Jiang, Lingxi Xie, Xiaokang Yang, Qi Tian

  20. A Survey on Visual Map Localization Using LiDARs and Cameras. arXiv 2022 paper bib

    Mahdi Elhousni, Xinming Huang

  21. A Technical Survey and Evaluation of Traditional Point Cloud Clustering Methods for LiDAR Panoptic Segmentation. ICCVW 2021 paper bib

    Yiming Zhao, Xiao Zhang, Xinming Huang

  22. Advances in adversarial attacks and defenses in computer vision: A survey. IEEE Access 2021 paper bib

    Naveed Akhtar, Ajmal Mian, Navid Kardan, Mubarak Shah

  23. Adversarial Examples on Object Recognition: A Comprehensive Survey. ACM Comput. Surv. 2021 paper bib

    Alexandru Constantin Serban, Erik Poll, Joost Visser

  24. Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective. arXiv 2020 paper bib

    Gabriel Resende Machado, Eugênio Silva, Ronaldo Ribeiro Goldschmidt

  25. Affective Image Content Analysis: Two Decades Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2022 paper bib

    Sicheng Zhao, Xingxu Yao, Jufeng Yang, Guoli Jia, Guiguang Ding, Tat-Seng Chua, Björn W. Schuller, Kurt Keutzer

  26. Applications of Artificial Neural Networks in Microorganism Image Analysis: A Comprehensive Review from Conventional Multilayer Perceptron to Popular Convolutional Neural Network and Potential Visual Transformer. arXiv 2021 paper bib

    Jinghua Zhang, Chen Li, Marcin Grzegorzek

  27. Automatic Gaze Analysis: A Survey of Deep Learning based Approaches. arXiv 2021 paper bib

    Shreya Ghosh, Abhinav Dhall, Munawar Hayat, Jarrod Knibbe, Qiang Ji

  28. Bridging Gap between Image Pixels and Semantics via Supervision: A Survey. arXiv 2021 paper bib

    Jiali Duan, C.-C. Jay Kuo

  29. Compositional Scene Representation Learning via Reconstruction: A Survey. arXiv 2022 paper bib

    Jinyang Yuan, Tonglin Chen, Bin Li, Xiangyang Xue

  30. Deep Depth Completion from Extremely Sparse Data: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022 paper bib

    Junjie Hu, Chenyu Bao, Mete Ozay, Chenyou Fan, Qing Gao, Honghai Liu, Tin Lun Lam

  31. Deep Image Deblurring: A Survey. Int. J. Comput. Vis. 2022 paper bib

    Kaihao Zhang, Wenqi Ren, Wenhan Luo, Wei-Sheng Lai, Björn Stenger, Ming-Hsuan Yang, Hongdong Li

  32. Deep Learning for 3D Point Cloud Understanding: A Survey. arXiv 2020 paper bib

    Haoming Lu, Humphrey Shi

  33. Deep Learning for Embodied Vision Navigation: A Survey. arXiv 2021 paper bib

    Fengda Zhu, Yi Zhu, Xiaodan Liang, Xiaojun Chang

  34. Deep Learning for Image Super-resolution: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021 paper bib

    Zhihao Wang, Jian Chen, Steven C. H. Hoi

  35. Deep Learning for Instance Retrieval: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021 paper bib

    Wei Chen, Yu Liu, Weiping Wang, Erwin Bakker, Theodoros Georgiou, Paul Fieguth, Li Liu, Michael S. Lew

  36. Deep Learning for Scene Classification: A Survey. arXiv 2021 paper bib

    Delu Zeng, Minyu Liao, Mohammad Tavakolian, Yulan Guo, Bolei Zhou, Dewen Hu, Matti Pietikäinen, Li Liu

  37. Deep Learning Technique for Human Parsing: A Survey and Outlook. arXiv 2023 paper bib

    Lu Yang, Wenhe Jia, Shan Li, Qing Song

  38. Efficient High-Resolution Deep Learning: A Survey. arXiv 2022 paper bib

    Arian Bakhtiarnia, Qi Zhang, Alexandros Iosifidis

  39. Geometric and Learning-based Mesh Denoising: A Comprehensive Survey. arXiv 2022 paper bib

    Honghua Chen, Mingqiang Wei, Jun Wang

  40. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022 paper bib

    Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, Demetri Terzopoulos

  41. Image/Video Deep Anomaly Detection: A Survey. arXiv 2021 paper bib

    Bahram Mohammadi, Mahmood Fathy, Mohammad Sabokrou

  42. Image-to-Image Translation: Methods and Applications. IEEE Trans. Multim. 2022 paper bib

    Yingxue Pang, Jianxin Lin, Tao Qin, Zhibo Chen

  43. Imbalance Problems in Object Detection: A Review. IEEE Trans. Pattern Anal. Mach. Intell. 2021 paper bib

    Kemal Oksuz, Baris Can Cam, Sinan Kalkan, Emre Akbas

  44. MmWave Radar and Vision Fusion for Object Detection in Autonomous Driving: A Review. Sensors 2022 paper bib

    Zhiqing Wei, Fengkai Zhang, Shuo Chang, Yangyang Liu, Huici Wu, Zhiyong Feng

  45. Multi-modal Sensor Fusion for Auto Driving Perception: A Survey. arXiv 2022 paper bib

    Keli Huang, Botian Shi, Xiang Li, Xin Li, Siyuan Huang, Yikang Li

  46. Object Detection in 20 Years: A Survey. arXiv 2019 paper bib

    Zhengxia Zou, Zhenwei Shi, Yuhong Guo, Jieping Ye

  47. Recent Advances in Vision Transformer: A Survey and Outlook of Recent Work. arXiv 2022 paper bib

    Khawar Islam

  48. Recovering 3D Human Mesh from Monocular Images: A Survey. arXiv 2022 paper bib

    Yating Tian, Hongwen Zhang, Yebin Liu, Limin Wang

  49. Single Image Super-Resolution Methods: A Survey. arXiv 2022 paper bib

    Bahattin Can Maral

  50. Temporal Sentence Grounding in Videos: A Survey and Future Directions. arXiv 2022 paper bib

    Hao Zhang, Aixin Sun, Wei Jing, Joey Tianyi Zhou

  51. The Elements of End-to-end Deep Face Recognition: A Survey of Recent Advances. ACM Comput. Surv. 2022 paper bib

    Hang Du, Hailin Shi, Dan Zeng, Xiao-Ping Zhang, Tao Mei

  52. The Impact of Machine Learning on 2D/3D Registration for Image-guided Interventions: A Systematic Review and Perspective. Frontiers Robotics AI 2021 paper bib

    Mathias Unberath, Cong Gao, Yicheng Hu, Max Judish, Russell H. Taylor, Mehran Armand, Robert B. Grupp

  53. The Need and Status of Sea Turtle Conservation and Survey of Associated Computer Vision Advances. arXiv 2021 paper bib

    Aditya Jyoti Paul

  54. Transformers in Remote Sensing: A Survey. arXiv 2022 paper bib

    Abdulaziz Amer Aleissaee, Amandeep Kumar, Rao Muhammad Anwer, Salman Khan, Hisham Cholakkal, Gui-Song Xia, Fahad Shahbaz Khan

  55. Transformers Meet Visual Learning Understanding: A Comprehensive Review. arXiv 2022 paper bib

    Yuting Yang, Licheng Jiao, Xu Liu, Fang Liu, Shuyuan Yang, Zhixi Feng, Xu Tang

  56. Video Unsupervised Domain Adaptation with Deep Learning: A Comprehensive Survey. arXiv 2022 paper bib

    Yuecong Xu, Haozhi Cao, Zhenghua Chen, Xiaoli Li, Lihua Xie, Jianfei Yang

Contrastive Learning

  1. A Survey on Contrastive Self-supervised Learning. arXiv 2020 paper bib

    Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, Fillia Makedon

  2. Contrastive Representation Learning: A Framework and Review. IEEE Access 2020 paper bib

    Phuc H. Le-Khac, Graham Healy, Alan F. Smeaton

  3. Self-supervised Learning: Generative or Contrastive. arXiv 2020 paper bib

    Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing Zhang, Jie Tang

Curriculum Learning

  1. A Survey on Curriculum Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2022 paper bib

    Xin Wang, Yudong Chen, Wenwu Zhu

  2. Automatic Curriculum Learning For Deep RL: A Short Survey. IJCAI 2020 paper bib

    Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, Pierre-Yves Oudeyer

  3. Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey. J. Mach. Learn. Res. 2020 paper bib

    Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, Peter Stone

  4. Curriculum Learning: A Survey. Int. J. Comput. Vis. 2022 paper bib

    Petru Soviany, Radu Tudor Ionescu, Paolo Rota, Nicu Sebe

Data Augmentation

  1. A Comprehensive Survey of Dataset Distillation. arXiv 2023 paper bib

    Shiye Lei, Dacheng Tao

  2. A Comprehensive Survey of Image Augmentation Techniques for Deep Learning. arXiv 2022 paper bib

    Mingle Xu, Sook Yoon, Alvaro Fuentes, Dong Sun Park

  3. A Survey of Automated Data Augmentation Algorithms for Deep Learning-based Image Classification Tasks. arXiv 2022 paper bib

    Zihan Yang, Richard O. Sinnott, James Bailey, Qiuhong Ke

  4. A Survey of Data Augmentation Approaches for NLP. ACL 2021 paper bib

    Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura, Eduard H. Hovy

  5. A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability. arXiv 2022 paper bib

    Chengtai Cao, Fan Zhou, Yurou Dai, Jianping Wang

  6. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019 paper bib

    Connor Shorten, Taghi M. Khoshgoftaar

  7. An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks. arXiv 2020 paper bib

    Brian Kenji Iwana, Seiichi Uchida

  8. Data Augmentation Approaches in Natural Language Processing: A Survey. AI Open 2022 paper bib

    Bohan Li, Yutai Hou, Wanxiang Che

  9. Data Augmentation on Graphs: A Technical Survey. arXiv 2022 paper bib

    Jiajun Zhou, Chenxuan Xie, Zhenyu Wen, Xiangyu Zhao, Qi Xuan

  10. Data Distillation: A Survey. arXiv 2023 paper bib

    Noveen Sachdeva, Julian J. McAuley

  11. Dataset Distillation: A Comprehensive Review. arXiv 2023 paper bib

    Ruonan Yu, Songhua Liu, Xinchao Wang

  12. Time Series Data Augmentation for Deep Learning: A Survey. IJCAI 2021 paper bib

    Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, Huan Xu

Deep Learning General Methods

  1. A Review and Roadmap of Deep Learning Causal Discovery in Different Variable Paradigms. arXiv 2022 paper bib

    Hang Chen, Keqing Du, Xinyu Yang, Chenguang Li

  2. A Survey of Deep Active Learning. ACM Comput. Surv. 2022 paper bib

    Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang Chen, Xin Wang

  3. A Survey of Deep Learning for Data Caching in Edge Network. Informatics 2020 paper bib

    Yantong Wang, Vasilis Friderikos

  4. A Survey of Deep Learning for Mathematical Reasoning. arXiv 2022 paper bib

    Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, Kai-Wei Chang

  5. A Survey of Deep Learning for Scientific Discovery. arXiv 2020 paper bib

    Maithra Raghu, Eric Schmidt

  6. A Survey of Label-noise Representation Learning: Past, Present and Future. arXiv 2020 paper bib

    Bo Han, Quanming Yao, Tongliang Liu, Gang Niu, Ivor W. Tsang, James T. Kwok, Masashi Sugiyama

  7. A Survey of Neuromorphic Computing and Neural Networks in Hardware. arXiv 2017 paper bib

    Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas Birdwell, Mark E. Dean, Garrett S. Rose, James S. Plank

  8. A Survey of Uncertainty in Deep Neural Networks. arXiv 2021 paper bib

    Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt, Jianxiang Feng, Anna M. Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, Muhammad Shahzad, Wen Yang, Richard Bamler, Xiao Xiang Zhu

  9. A Survey on Active Deep Learning: From Model-driven to Data-driven. arXiv 2020 paper bib

    Peng Liu, Lizhe Wang, Guojin He, Lei Zhao

  10. A Survey on Assessing the Generalization Envelope of Deep Neural Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples. arXiv 2020 paper bib

    Julia Lust, Alexandru Paul Condurache

  11. A Survey on Concept Factorization: From Shallow to Deep Representation Learning. Inf. Process. Manag. 2021 paper bib

    Zhao Zhang, Yan Zhang, Mingliang Xu, Li Zhang, Yi Yang, Shuicheng Yan

  12. A Survey on Deep Hashing Methods. arXiv 2020 paper bib

    Xiao Luo, Chong Chen, Huasong Zhong, Hao Zhang, Minghua Deng, Jianqiang Huang, Xiansheng Hua

  13. A Survey on Deep Learning with Noisy Labels: How to train your model when you cannot trust on the annotations?. SIBGRAPI 2020 paper bib

    Filipe R. Cordeiro, Gustavo Carneiro

  14. A Survey on Dynamic Network Embedding. arXiv 2020 paper bib

    Yu Xie, Chunyi Li, Bin Yu, Chen Zhang, Zhouhua Tang

  15. A Survey on Network Embedding. IEEE Trans. Knowl. Data Eng. 2019 paper bib

    Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu

  16. A Tutorial on Network Embeddings. arXiv 2018 paper bib

    Haochen Chen, Bryan Perozzi, Rami Al-Rfou, Steven Skiena

  17. Continual Lifelong Learning with Neural Networks: A Review. Neural Networks 2019 paper bib

    German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, Stefan Wermter

  18. Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. IEEE Commun. Surv. Tutorials 2020 paper bib

    Xiaofei Wang, Yiwen Han, Victor C. M. Leung, Dusit Niyato, Xueqiang Yan, Xu Chen

  19. Deep learning. Nat. 2015 paper bib

    Yann LeCun, Yoshua Bengio, Geoffrey Hinton

  20. Deep Learning for Matching in Search and Recommendation. SIGIR 2018 paper bib

    Jun Xu, Xiangnan He, Hang Li

  21. Deep Learning Theory Review: An Optimal Control and Dynamical Systems Perspective. arXiv 2019 paper bib

    Guan-Horng Liu, Evangelos A. Theodorou

  22. Deep Long-Tailed Learning: A Survey. arXiv 2021 paper bib

    Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, Jiashi Feng

  23. Dynamic Neural Networks: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022 paper bib

    Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, Yulin Wang

  24. Embracing Change: Continual Learning in Deep Neural Networks. Trends in Cognitive Sciences 2020 paper bib

    Raia Hadsell, Dushyant Rao, Andrei A. Rusu, Razvan Pascanu

  25. Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 2017 paper bib

    Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst

  26. Heuristic design of fuzzy inference systems: A review of three decades of research. Eng. Appl. Artif. Intell. 2019 paper bib

    Varun Ojha, Ajith Abraham, Václav Snásel

  27. Imitation Learning: Progress, Taxonomies and Challenges. IEEE Trans. Neural Networks Learn. Syst. 2021 paper bib

    Boyuan Zheng, Sunny Verma, Jianlong Zhou, Ivor W. Tsang, Fang Chen

  28. Improving Deep Learning Models via Constraint-Based Domain Knowledge: a Brief Survey. arXiv 2020 paper bib

    Andrea Borghesi, Federico Baldo, Michela Milano

  29. Interpretation of Time-Series Deep Models: A Survey. arXiv 2023 paper bib

    Ziqi Zhao, Yucheng Shi, Shushan Wu, Fan Yang, Wenzhan Song, Ninghao Liu

  30. Knowledge-augmented Deep Learning and Its Applications: A Survey. arXiv 2022 paper bib

    Zijun Cui, Tian Gao, Kartik Talamadupula, Qiang Ji

  31. Learning from Noisy Labels with Deep Neural Networks: A Survey. arXiv 2020 paper bib

    Hwanjun Song, Minseok Kim, Dongmin Park, Jae-Gil Lee

  32. Model Complexity of Deep Learning: A Survey. Knowl. Inf. Syst. 2021 paper bib

    Xia Hu, Lingyang Chu, Jian Pei, Weiqing Liu, Jiang Bian

  33. Network representation learning: A macro and micro view. AI Open 2021 paper bib

    Xueyi Liu, Jie Tang

  34. Network Representation Learning: A Survey. IEEE Trans. Big Data 2020 paper bib

    Daokun Zhang, Jie Yin, Xingquan Zhu, Chengqi Zhang

  35. Network representation learning: an overview. SCIENTIA SINICA Informationis 2017 paper bib

    Cunchao TU, Cheng YANG, Zhiyuan LIU, Maosong SUN

  36. On Neural Differential Equations. arXiv 2022 paper bib

    Patrick Kidger

  37. Opportunities and Challenges in Deep Learning Adversarial Robustness: A Survey. arXiv 2020 paper bib

    Samuel Henrique Silva, Peyman Najafirad

  38. Partial Differential Equations Meet Deep Neural Networks: A Survey. arXiv 2022 paper bib

    Shudong Huang, Wentao Feng, Chenwei Tang, Jiancheng Lv

  39. Recent advances in deep learning theory. arXiv 2020 paper bib

    Fengxiang He, Dacheng Tao

  40. Relational inductive biases, deep learning, and graph networks. arXiv 2018 paper bib

    Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matthew M. Botvinick, Oriol Vinyals, Yujia Li, Razvan Pascanu

  41. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013 paper bib

    Yoshua Bengio, Aaron C. Courville, Pascal Vincent

  42. Review: Ordinary Differential Equations For Deep Learning. arXiv 2019 paper bib

    Xinshi Chen

  43. Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 2021 paper bib

    Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, Alexandra Peste

  44. Survey of Expressivity in Deep Neural Networks. arXiv 2016 paper bib

    Maithra Raghu, Ben Poole, Jon M. Kleinberg, Surya Ganguli, Jascha Sohl-Dickstein

  45. Survey of reasoning using Neural networks. arXiv 2017 paper bib

    Amit Sahu

  46. Survey on Large Scale Neural Network Training. arXiv 2022 paper bib

    Julia Gusak, Daria Cherniuk, Alena Shilova, Alexandr Katrutsa, Daniel Bershatsky, Xunyi Zhao, Lionel Eyraud-Dubois, Oleg Shlyazhko, Denis Dimitrov, Ivan V. Oseledets, Olivier Beaumont

  47. The Deep Learning Compiler: A Comprehensive Survey. IEEE Trans. Parallel Distributed Syst. 2021 paper bib

    Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan, Lin Gan, Guangwen Yang, Depei Qian

  48. The Modern Mathematics of Deep Learning. arXiv 2021 paper bib

    Julius Berner, Philipp Grohs, Gitta Kutyniok, Philipp Petersen

  49. Time Series Data Imputation: A Survey on Deep Learning Approaches. arXiv 2020 paper bib

    Chenguang Fang, Chen Wang

  50. Time Series Forecasting With Deep Learning: A Survey. arXiv 2020 paper bib

    Bryan Lim, Stefan Zohren

  51. Tutorial on Variational Autoencoders. arXiv 2016 paper bib

    Carl Doersch

Deep Reinforcement Learning

  1. A Mini Review on the utilization of Reinforcement Learning with OPC UA. arXiv 2023 paper bib

    Simon Schindler, Martin Uray, Stefan Huber

  2. A Short Survey On Memory Based Reinforcement Learning. arXiv 2019 paper bib

    Dhruv Ramani

  3. A Short Survey on Probabilistic Reinforcement Learning. arXiv 2019 paper bib

    Reazul Hasan Russel

  4. A survey of benchmarking frameworks for reinforcement learning. arXiv 2020 paper bib

    Belinda Stapelberg, Katherine M. Malan

  5. A Survey of Explainable Reinforcement Learning. arXiv 2022 paper bib

    Stephanie Milani, Nicholay Topin, Manuela Veloso, Fei Fang

  6. A Survey of Exploration Strategies in Reinforcement Learning. McGill University 2003 paper bib

    R. McFarlane

  7. A Survey of Inverse Reinforcement Learning: Challenges, Methods and Progress. Artif. Intell. 2021 paper bib

    Saurabh Arora, Prashant Doshi

  8. A Survey of Reinforcement Learning Algorithms for Dynamically Varying Environments. ACM Comput. Surv. 2022 paper bib

    Sindhu Padakandla

  9. A Survey of Reinforcement Learning Informed by Natural Language. IJCAI 2019 paper bib

    Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob N. Foerster, Jacob Andreas, Edward Grefenstette, Shimon Whiteson, Tim Rocktäschel

  10. A Survey of Reinforcement Learning Techniques: Strategies, Recent Development, and Future Directions. arXiv 2020 paper bib

    Amit Kumar Mondal

  11. A Survey of Zero-shot Generalisation in Deep Reinforcement Learning. J. Artif. Intell. Res. 2023 paper bib

    Robert Kirk, Amy Zhang, Edward Grefenstette, Tim Rocktäschel

  12. A Survey on Deep Reinforcement Learning for Audio-Based Applications. Artif. Intell. Rev. 2023 paper bib

    Siddique Latif, Heriberto Cuayáhuitl, Farrukh Pervez, Fahad Shamshad, Hafiz Shehbaz Ali, Erik Cambria

  13. A Survey on Deep Reinforcement Learning for Data Processing and Analytics. arXiv 2021 paper bib

    Qingpeng Cai, Can Cui, Yiyuan Xiong, Wei Wang, Zhongle Xie, Meihui Zhang

  14. A Survey on Explainable Reinforcement Learning: Concepts, Algorithms, Challenges. arXiv 2022 paper bib

    Yunpeng Qing, Shunyu Liu, Jie Song, Mingli Song

  15. A survey on intrinsic motivation in reinforcement learning. arXiv 2019 paper bib

    Arthur Aubret, Laëtitia Matignon, Salima Hassas

  16. A Survey on Reinforcement Learning for Combinatorial Optimization. arXiv 2020 paper bib

    Yunhao Yang, Andrew B. Whinston

  17. A Survey on Reinforcement Learning for Recommender Systems. arXiv 2021 paper bib

    Yuanguo Lin, Yong Liu, Fan Lin, Pengcheng Wu, Wenhua Zeng, Chunyan Miao

  18. A Survey on Reproducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots. CoRL 2019 paper bib

    Nicolai A. Lynnerup, Laura Nolling, Rasmus Hasle, John Hallam

  19. A Survey on Transformers in Reinforcement Learning. arXiv 2023 paper bib

    Wenzhe Li, Hao Luo, Zichuan Lin, Chongjie Zhang, Zongqing Lu, Deheng Ye

  20. Adapting Behaviour via Intrinsic Reward: A Survey and Empirical Study. arXiv 2019 paper bib

    Cam Linke, Nadia M. Ady, Martha White, Thomas Degris, Adam White

  21. Automated Reinforcement Learning (AutoRL): A Survey and Open Problems. J. Artif. Intell. Res. 2022 paper bib

    Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie Miao, Theresa Eimer, Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, Frank Hutter, Marius Lindauer

  22. Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics. arXiv 2020 paper bib

    Amir Mosavi, Pedram Ghamisi, Yaser Faghan, Puhong Duan

  23. Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey. J. Mach. Learn. Res. 2020 paper bib

    Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, Peter Stone

  24. Deep Model-Based Reinforcement Learning for High-Dimensional Problems, a Survey. arXiv 2020 paper bib

    Aske Plaat, Walter Kosters, Mike Preuss

  25. Deep Reinforcement Learning for Autonomous Driving: A Survey. IEEE Trans. Intell. Transp. Syst. 2022 paper bib

    B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil Kumar Yogamani, Patrick Pérez

  26. Deep Reinforcement Learning for Clinical Decision Support: A Brief Survey. arXiv 2019 paper bib

    Siqi Liu, Kee Yuan Ngiam, Mengling Feng

  27. Deep Reinforcement Learning for Demand Driven Services in Logistics and Transportation Systems: A Survey. arXiv 2021 paper bib

    Zefang Zong, Tao Feng, Tong Xia, Depeng Jin, Yong Li

  28. Deep Reinforcement Learning for Intelligent Transportation Systems: A Survey. IEEE Trans. Intell. Transp. Syst. 2022 paper bib

    Ammar Haydari, Yasin Yilmaz

  29. Deep Reinforcement Learning in Quantitative Algorithmic Trading: A Review. arXiv 2021 paper bib

    Tidor-Vlad Pricope

  30. Deep Reinforcement Learning: A Brief Survey. IEEE Signal Process. Mag. 2017 paper bib

    Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, Anil Anthony Bharath

  31. Deep Reinforcement Learning: An Overview. arXiv 2017 paper bib

    Yuxi Li

  32. Derivative-Free Reinforcement Learning: A Review. Frontiers Comput. Sci. 2021 paper bib

    Hong Qian, Yang Yu

  33. Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework and Survey. arXiv 2021 paper bib

    Richard Dazeley, Peter Vamplew, Francisco Cruz

  34. Feature-Based Aggregation and Deep Reinforcement Learning: A Survey and Some New Implementations. IEEE CAA J. Autom. Sinica 2019 paper bib

    Dimitri P. Bertsekas

  35. Model-based Reinforcement Learning: A Survey. arXiv 2020 paper bib

    Thomas M. Moerland, Joost Broekens, Catholijn M. Jonker

  36. Reinforcement Learning for Combinatorial Optimization: A Survey. Comput. Oper. Res. 2021 paper bib

    Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, Evgeny Burnaev

  37. Reinforcement Learning in Healthcare: A Survey. arXiv 2019 paper bib

    Chao Yu, Jiming Liu, Shamim Nemati

  38. Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a Survey. SSCI 2020 paper bib

    Wenshuai Zhao, Jorge Peña Queralta, Tomi Westerlund

  39. Survey on reinforcement learning for language processing. Artif. Intell. Rev. 2023 paper bib

    Víctor Uc-Cetina, Nicolás Navarro-Guerrero, Anabel Martín-González, Cornelius Weber, Stefan Wermter

  40. Tutorial and Survey on Probabilistic Graphical Model and Variational Inference in Deep Reinforcement Learning. SSCI 2019 paper bib

    Xudong Sun, Bernd Bischl

Diffusion Models

  1. A Survey on Generative Diffusion Model. arXiv 2022 paper bib

    Hanqun Cao, Cheng Tan, Zhangyang Gao, Guangyong Chen, Pheng-Ann Heng, Stan Z. Li

  2. Diffusion Models for Medical Image Analysis: A Comprehensive Survey. arXiv 2022 paper bib

    Amirhossein Kazerouni, Ehsan Khodapanah Aghdam, Moein Heidari, Reza Azad, Mohsen Fayyaz, Ilker Hacihaliloglu, Dorit Merhof

  3. Diffusion Models in NLP: A Survey. arXiv 2023 paper bib

    **

  4. Diffusion Models in Vision: A Survey. arXiv 2022 paper bib

    Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, Mubarak Shah

  5. Diffusion Models: A Comprehensive Survey of Methods and Applications. arXiv 2022 paper bib

    Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao, Wentao Zhang, Ming-Hsuan Yang, Bin Cui

  6. Efficient Diffusion Models for Vision: A Survey. arXiv 2022 paper bib

    Anwaar Ulhaq, Naveed Akhtar, Ganna Pogrebna

Federated Learning

  1. A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection. arXiv 2019 paper bib

    Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Xu Liu, Bingsheng He

  2. A Survey on Heterogeneous Federated Learning. arXiv 2022 paper bib

    Dashan Gao, Xin Yao, Qiang Yang

  3. Achieving Security and Privacy in Federated Learning Systems: Survey, Research Challenges and Future Directions. Eng. Appl. Artif. Intell. 2021 paper bib

    Alberto Blanco-Justicia, Josep Domingo-Ferrer, Sergio Martínez, David Sánchez, Adrian Flanagan, Kuan Eeik Tan

  4. Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 2021 paper bib

    Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao

  5. Federated Graph Machine Learning: A Survey of Concepts, Techniques, and Applications. SIGKDD Explor. 2022 paper bib

    Xingbo Fu, Binchi Zhang, Yushun Dong, Chen Chen, Jundong Li

  6. Federated Learning Challenges and Opportunities: An Outlook. ICASSP 2022 paper bib

    Jie Ding, Eric Tramel, Anit Kumar Sahu, Shuang Wu, Salman Avestimehr, Tao Zhang

  7. Fusion of Federated Learning and Industrial Internet of Things: A Survey. arXiv 2021 paper bib

    Parimala M., R. M. Swarna Priya, Quoc-Viet Pham, Kapal Dev, Praveen Kumar Reddy Maddikunta, Thippa Reddy Gadekallu, Thien Huynh-The

  8. Privacy and Robustness in Federated Learning: Attacks and Defenses. arXiv 2020 paper bib

    Lingjuan Lyu, Han Yu, Xingjun Ma, Lichao Sun, Jun Zhao, Qiang Yang, Philip S. Yu

  9. Threats to Federated Learning: A Survey. arXiv 2020 paper bib

    Lingjuan Lyu, Han Yu, Qiang Yang

  10. Towards Utilizing Unlabeled Data in Federated Learning: A Survey and Prospective. arXiv 2020 paper bib

    Yilun Jin, Xiguang Wei, Yang Liu, Qiang Yang

Few-Shot and Zero-Shot Learning

  1. A Comprehensive Survey of Few-shot Learning: Evolution, Applications, Challenges, and Opportunities. arXiv 2022 paper bib

    Yisheng Song, Ting Wang, Subrota K. Mondal, Jyoti Prakash Sahoo

  2. A Survey of Zero-shot Generalisation in Deep Reinforcement Learning. J. Artif. Intell. Res. 2023 paper bib

    Robert Kirk, Amy Zhang, Edward Grefenstette, Tim Rocktäschel

  3. A Survey of Zero-Shot Learning: Settings, Methods, and Applications. ACM Trans. Intell. Syst. Technol. 2019 paper bib

    Wei Wang, Vincent W. Zheng, Han Yu, Chunyan Miao

  4. A Survey on Few-Shot Class-Incremental Learning. arXiv 2023 paper bib

    Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, Prayag Tiwari

  5. A Survey on Machine Learning from Few Samples. Pattern Recognition 2020 paper bib

    Jiang Lu, Pinghua Gong, Jieping Ye, Jianwei Zhang, Changshui Zhang

  6. Generalizing from a Few Examples: A Survey on Few-Shot Learning. ACM Comput. Surv. 2021 paper bib

    Yaqing Wang, Quanming Yao, James T. Kwok, Lionel M. Ni

  7. Learning from Few Samples: A Survey. arXiv 2020 paper bib

    Nihar Bendre, Hugo Terashima-Marín, Peyman Najafirad

General Machine Learning

  1. A Comprehensive Survey on Outlying Aspect Mining Methods. arXiv 2020 paper bib

    Durgesh Samariya, Jiangang Ma, Sunil Aryal

  2. A survey and taxonomy of loss functions in machine learning. arXiv 2023 paper bib

    Lorenzo Ciampiconi, Adam Elwood, Marco Leonardi, Ashraf Mohamed, Alessandro Rozza

  3. A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications. Neural Networks 2019 paper bib

    Leonardo Enzo Brito da Silva, Islam Elnabarawy, Donald C. Wunsch II

  4. A survey of dimensionality reduction techniques. arXiv 2014 paper bib

    Carlos Oscar Sánchez Sorzano, Javier Vargas, Alberto Domingo Pascual-Montano

  5. A Survey of Human-in-the-loop for Machine Learning. Future Gener. Comput. Syst. 2022 paper bib

    Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma, Liang He

  6. A Survey of Learning Causality with Data: Problems and Methods. ACM Comput. Surv. 2021 paper bib

    Ruocheng Guo, Lu Cheng, Jundong Li, P. Richard Hahn, Huan Liu

  7. A Survey of Learning on Small Data. arXiv 2022 paper bib

    Xiaofeng Cao, Weixin Bu, Shengjun Huang, Ying-Peng Tang, Yaming Guo, Yi Chang, Ivor W. Tsang

  8. A Survey of Predictive Modelling under Imbalanced Distributions. arXiv 2015 paper bib

    Paula Branco, Luís Torgo, Rita P. Ribeiro

  9. A Survey On (Stochastic Fractal Search) Algorithm. arXiv 2021 paper bib

    Mohammed ElKomy

  10. A Survey on Data Collection for Machine Learning: a Big Data - AI Integration Perspective. IEEE Trans. Knowl. Data Eng. 2021 paper bib

    Yuji Roh, Geon Heo, Steven Euijong Whang

  11. A Survey on Distributed Machine Learning. ACM Comput. Surv. 2021 paper bib

    Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, Jan S. Rellermeyer

  12. A survey on feature weighting based K-Means algorithms. J. Classif. 2016 paper bib

    Renato Cordeiro de Amorim

  13. A survey on graph kernels. Appl. Netw. Sci. 2020 paper bib

    Nils M. Kriege, Fredrik D. Johansson, Christopher Morris

  14. A Survey on Large-scale Machine Learning. IEEE Trans. Knowl. Data Eng. 2022 paper bib

    Meng Wang, Weijie Fu, Xiangnan He, Shijie Hao, Xindong Wu

  15. A Survey on Optimal Transport for Machine Learning: Theory and Applications. arXiv 2021 paper bib

    Luis Caicedo Torres, Luiz Manella Pereira, M. Hadi Amini

  16. A Survey on Resilient Machine Learning. arXiv 2017 paper bib

    Atul Kumar, Sameep Mehta

  17. A Survey on Surrogate Approaches to Non-negative Matrix Factorization. arXiv 2018 paper bib

    Pascal Fernsel, Peter Maass

  18. Adversarial Examples in Modern Machine Learning: A Review. arXiv 2019 paper bib

    Rey Reza Wiyatno, Anqi Xu, Ousmane Dia, Archy de Berker

  19. Algorithms Inspired by Nature: A Survey. arXiv 2019 paper bib

    Pranshu Gupta

  20. An Overview of Privacy in Machine Learning. arXiv 2020 paper bib

    Emiliano De Cristofaro

  21. Are deep learning models superior for missing data imputation in large surveys? Evidence from an empirical comparison. arXiv 2021 paper bib

    Zhenhua Wang, Olanrewaju Akande, Jason Poulos, Fan Li

  22. Certification of embedded systems based on Machine Learning: A survey. arXiv 2021 paper bib

    Guillaume Vidot, Christophe Gabreau, Ileana Ober, Iulian Ober

  23. Class-incremental learning: survey and performance evaluation. arXiv 2020 paper bib

    Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew D. Bagdanov, Joost van de Weijer

  24. Data and its (dis)contents: A survey of dataset development and use in machine learning research. Patterns 2021 paper bib

    Amandalynne Paullada, Inioluwa Deborah Raji, Emily M. Bender, Emily Denton, Alex Hanna

  25. Generating Artificial Outliers in the Absence of Genuine Ones - a Survey. ACM Trans. Knowl. Discov. Data 2021 paper bib

    Georg Steinbuss, Klemens Böhm

  26. Hierarchical Mixtures-of-Experts for Exponential Family Regression Models with Generalized Linear Mean Functions: A Survey of Approximation and Consistency Results. UAI 1998 paper bib

    Wenxin Jiang, Martin A. Tanner

  27. Hyperbox-based machine learning algorithms: A comprehensive survey. Soft Comput. 2021 paper bib

    Thanh Tung Khuat, Dymitr Ruta, Bogdan Gabrys

  28. Introduction to Core-sets: an Updated Survey. arXiv 2020 paper bib

    Dan Feldman

  29. Laplacian-Based Dimensionality Reduction Including Spectral Clustering, Laplacian Eigenmap, Locality Preserving Projection, Graph Embedding, and Diffusion Map: Tutorial and Survey. arXiv 2021 paper bib

    Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, Mark Crowley

  30. Logic Locking at the Frontiers of Machine Learning: A Survey on Developments and Opportunities. VLSI-SoC 2021 paper bib

    Dominik Sisejkovic, Lennart M. Reimann, Elmira Moussavi, Farhad Merchant, Rainer Leupers

  31. Machine Learning at the Network Edge: A Survey. ACM Comput. Surv. 2022 paper bib

    M. G. Sarwar Murshed, Christopher Murphy, Daqing Hou, Nazar Khan, Ganesh Ananthanarayanan, Faraz Hussain

  32. Machine Learning for Spatiotemporal Sequence Forecasting: A Survey. arXiv 2018 paper bib

    Xingjian Shi, Dit-Yan Yeung

  33. Machine Learning in Network Centrality Measures: Tutorial and Outlook. ACM Comput. Surv. 2019 paper bib

    Felipe Grando, Lisandro Zambenedetti Granville, Luís C. Lamb

  34. Machine Learning Testing: Survey, Landscapes and Horizons. IEEE Trans. Software Eng. 2022 paper bib

    Jie M. Zhang, Mark Harman, Lei Ma, Yang Liu

  35. Machine Learning that Matters. ICML 2012 paper bib

    Kiri Wagstaff

  36. Machine Learning with World Knowledge: The Position and Survey. arXiv 2017 paper bib

    Yangqiu Song, Dan Roth

  37. Mean-Field Learning: a Survey. arXiv 2012 paper bib

    Hamidou Tembine, Raúl Tempone, Pedro Vilanova

  38. Multidimensional Scaling, Sammon Mapping, and Isomap: Tutorial and Survey. arXiv 2020 paper bib

    Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, Mark Crowley

  39. Multimodal Machine Learning: A Survey and Taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2019 paper bib

    Tadas Baltrusaitis, Chaitanya Ahuja, Louis-Philippe Morency

  40. Multi-objective multi-agent decision making: a utility-based analysis and survey. AAMAS 2020 paper bib

    Roxana Radulescu, Patrick Mannion, Diederik M. Roijers, Ann Nowé

  41. Rank-based Decomposable Losses in Machine Learning: A Survey. arXiv 2022 paper bib

    Shu Hu, Xin Wang, Siwei Lyu

  42. Rational Kernels: A survey. arXiv 2019 paper bib

    Abhishek Ghose

  43. Sampling Constrained Continuous Probability Distributions: A Review. WIREs Computational Statistics 2022 paper bib

    Shiwei Lan, Lulu Kang

  44. Statistical Queries and Statistical Algorithms: Foundations and Applications. arXiv 2020 paper bib

    Lev Reyzin

  45. Structure Learning of Probabilistic Graphical Models: A Comprehensive Survey. arXiv 2011 paper bib

    Yang Zhou

  46. Survey & Experiment: Towards the Learning Accuracy. arXiv 2010 paper bib

    Zeyuan Allen Zhu

  47. Survey on Feature Selection. arXiv 2015 paper bib

    Tarek Amr Abdallah, Beatriz de la Iglesia

  48. Survey on Multi-output Learning. IEEE Trans. Neural Networks Learn. Syst. 2020 paper bib

    Donna Xu, Yaxin Shi, Ivor W. Tsang, Yew-Soon Ong, Chen Gong, Xiaobo Shen

  49. Survey: Machine Learning in Production Rendering. arXiv 2020 paper bib

    Shilin Zhu

  50. The Benefits of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses. Theory of Evolutionary Computation 2020 paper bib

    Dirk Sudholt

  51. The Mathematics of Artificial Intelligence. arXiv 2022 paper bib

    Gitta Kutyniok

  52. Towards Causal Representation Learning. arXiv 2021 paper bib

    Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, Yoshua Bengio

  53. Towards Out-Of-Distribution Generalization: A Survey. arXiv 2021 paper bib

    Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, Peng Cui

  54. Verification for Machine Learning, Autonomy, and Neural Networks Survey. arXiv 2018 paper bib

    Weiming Xiang, Patrick Musau, Ayana A. Wild, Diego Manzanas Lopez, Nathaniel Hamilton, Xiaodong Yang, Joel A. Rosenfeld, Taylor T. Johnson

  55. What Can Knowledge Bring to Machine Learning? - A Survey of Low-shot Learning for Structured Data. ACM Trans. Intell. Syst. Technol. 2022 paper bib

    Yang Hu, Adriane Chapman, Guihua Wen, Wendy Hall

Generative Adversarial Networks

  1. A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. arXiv 2020 paper bib

    Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, Jieping Ye

  2. A Survey on Deep Graph Generation: Methods and Applications. LoG 2022 paper bib

    Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, Shu Wu

  3. A Survey on Generative Adversarial Networks: Variants, Applications, and Training. ACM Comput. Surv. 2022 paper bib

    Abdul Jabbar, Xi Li, Bourahla Omar

  4. Data synthesis and adversarial networks: A review and meta-analysis in cancer imaging. Medical Image Anal. 2023 paper bib

    Richard Osuala, Kaisar Kushibar, Lidia Garrucho, Akis Linardos, Zuzanna Szafranowska, Stefan Klein, Ben Glocker, Oliver Díaz, Karim Lekadir

  5. Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models. IEEE Trans. Pattern Anal. Mach. Intell. 2022 paper bib

    Sam Bond-Taylor, Adam Leach, Yang Long, Chris G. Willcocks

  6. Deep Generative Models on 3D Representations: A Survey. arXiv 2022 paper bib

    Zifan Shi, Sida Peng, Yinghao Xu, Yiyi Liao, Yujun Shen

  7. GAN Computers Generate Arts? A Survey on Visual Arts, Music, and Literary Text Generation using Generative Adversarial Network. Displays 2022 paper bib

    Sakib Shahriar

  8. GAN Inversion: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023 paper bib

    Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, Ming-Hsuan Yang

  9. Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy. ACM Comput. Surv. 2022 paper bib

    Zhengwei Wang, Qi She, Tomás E. Ward

  10. Generative Adversarial Networks in Human Emotion Synthesis: A Review. IEEE Access 2020 paper bib

    Noushin Hajarolasvadi, Miguel Arjona Ramírez, Wesley Beccaro, Hasan Demirel

  11. Generative Adversarial Networks: A Survey Towards Private and Secure Applications. arXiv 2021 paper bib

    Zhipeng Cai, Zuobin Xiong, Honghui Xu, Peng Wang, Wei Li, Yi Pan

  12. Generative Adversarial Networks: An Overview. IEEE Signal Process. Mag. 2018 paper bib

    Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, Anil A. Bharath

  13. How Generative Adversarial Networks and Their Variants Work: An Overview. ACM Comput. Surv. 2019 paper bib

    Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, Sungroh Yoon

  14. Stabilizing Generative Adversarial Networks: A Survey. arXiv 2019 paper bib

    Maciej Wiatrak, Stefano V. Albrecht, Andrew Nystrom

Graph Neural Networks

  1. A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications. IEEE Trans. Knowl. Data Eng. 2018 paper bib

    Hongyun Cai, Vincent W. Zheng, Kevin Chen-Chuan Chang

  2. A Comprehensive Survey of Graph-level Learning. arXiv 2023 paper bib

    Zhenyu Yang, Ge Zhang, Jia Wu, Jian Yang, Quan Z. Sheng, Shan Xue, Chuan Zhou, Charu C. Aggarwal, Hao Peng, Wenbin Hu, Edwin Hancock, Pietro Liò

  3. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 2021 paper bib

    Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu

  4. A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability. arXiv 2022 paper bib

    Enyan Dai, Tianxiang Zhao, Huaisheng Zhu, Junjie Xu, Zhimeng Guo, Hui Liu, Jiliang Tang, Suhang Wang

  5. A Survey of Explainable Graph Neural Networks: Taxonomy and Evaluation Metrics. arXiv 2022 paper bib

    Yiqiao Li, Jianlong Zhou, Sunny Verma, Fang Chen

  6. A Survey on Graph Neural Networks and Graph Transformers in Computer Vision: A Task-Oriented Perspective. arXiv 2022 paper bib

    Chaoqi Chen, Yushuang Wu, Qiyuan Dai, Hong-Yu Zhou, Mutian Xu, Sibei Yang, Xiaoguang Han, Yizhou Yu

  7. A Survey on Graph Neural Networks for Knowledge Graph Completion. arXiv 2020 paper bib

    Siddhant Arora

  8. A Survey on Graph Structure Learning: Progress and Opportunities. arXiv 2021 paper bib

    Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu, Carl Yang, Shu Wu

  9. A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources. arXiv 2020 paper bib

    Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, Philip S. Yu

  10. A Survey on The Expressive Power of Graph Neural Networks. arXiv 2020 paper bib

    Ryoma Sato

  11. A Systematic Survey on Deep Generative Models for Graph Generation. arXiv 2020 paper bib

    Xiaojie Guo, Liang Zhao

  12. Adversarial Attack and Defense on Graph Data: A Survey. arXiv 2018 paper bib

    Lichao Sun, Ji Wang, Philip S. Yu, Bo Li

  13. Automated Graph Machine Learning: Approaches, Libraries and Directions. arXiv 2022 paper bib

    Xin Wang, Ziwei Zhang, Wenwu Zhu

  14. Bridging the Gap between Spatial and Spectral Domains: A Survey on Graph Neural Networks. arXiv 2020 paper bib

    Zhiqian Chen, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang Zhao, Feng Chen, Chang-Tien Lu

  15. Challenges and Opportunities in Deep Reinforcement Learning with Graph Neural Networks: A Comprehensive review of Algorithms and Applications. arXiv 2022 paper bib

    Sai Munikoti, Deepesh Agarwal, Laya Das, Mahantesh Halappanavar, Balasubramaniam Natarajan

  16. Computing Graph Neural Networks: A Survey from Algorithms to Accelerators. ACM Comput. Surv. 2022 paper bib

    Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, Eduard Alarcón

  17. Deep Graph Similarity Learning: A Survey. Data Min. Knowl. Discov. 2021 paper bib

    Guixiang Ma, Nesreen K. Ahmed, Theodore L. Willke, Philip S. Yu

  18. Deep Learning on Graphs: A Survey. IEEE Trans. Knowl. Data Eng. 2022 paper bib

    Ziwei Zhang, Peng Cui, Wenwu Zhu

  19. Distributed Graph Neural Network Training: A Survey. arXiv 2022 paper bib

    Yingxia Shao, Hongzheng Li, Xizhi Gu, Hongbo Yin, Yawen Li, Xupeng Miao, Wentao Zhang, Bin Cui, Lei Chen

  20. Explainability in Graph Neural Networks: A Taxonomic Survey. arXiv 2020 paper bib

    Hao Yuan, Haiyang Yu, Shurui Gui, Shuiwang Ji

  21. Fairness in Graph Mining: A Survey. arXiv 2022 paper bib

    Yushun Dong, Jing Ma, Chen Chen, Jundong Li

  22. Federated Graph Machine Learning: A Survey of Concepts, Techniques, and Applications. SIGKDD Explor. 2022 paper bib

    Xingbo Fu, Binchi Zhang, Yushun Dong, Chen Chen, Jundong Li

  23. Federated Graph Neural Networks: Overview, Techniques and Challenges. arXiv 2022 paper bib

    Rui Liu, Han Yu

  24. Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey. arXiv 2020 paper bib

    Joakim Skarding, Bogdan Gabrys, Katarzyna Musial

  25. Geometrically Equivariant Graph Neural Networks: A Survey. arXiv 2022 paper bib

    Jiaqi Han, Yu Rong, Tingyang Xu, Wenbing Huang

  26. Graph Embedding Techniques, Applications, and Performance: A Survey. Knowl. Based Syst. 2018 paper bib

    Palash Goyal, Emilio Ferrara

  27. Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art. Data Sci. Eng. 2021 paper bib

    Yun Peng, Byron Choi, Jianliang Xu

  28. Graph Learning: A Survey. IEEE Trans. Artif. Intell. 2021 paper bib

    Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, Huan Liu

  29. Graph Neural Network for Traffic Forecasting: A Survey. Expert Syst. Appl. 2022 paper bib

    Weiwei Jiang, Jiayun Luo

  30. Graph Neural Networks for Graphs with Heterophily: A Survey. arXiv 2022 paper bib

    Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, Philip S. Yu

  31. Graph Neural Networks for Natural Language Processing: A Survey. Found. Trends Mach. Learn. 2023 paper bib

    Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning Gao, Shucheng Li, Jian Pei, Bo Long

  32. Graph Neural Networks in Recommender Systems: A Survey. ACM Comput. Surv. 2023 paper bib

    Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, Bin Cui

  33. Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Perspective. IJCAI 2020 paper bib

    Luís C. Lamb, Artur S. d'Avila Garcez, Marco Gori, Marcelo O. R. Prates, Pedro H. C. Avelar, Moshe Y. Vardi

  34. Graph Neural Networks with Generated Parameters for Relation Extraction. ACL 2019 paper bib

    Hao Zhu, Yankai Lin, Zhiyuan Liu, Jie Fu, Tat-Seng Chua, Maosong Sun

  35. Graph Neural Networks: A Review of Methods and Applications. AI Open 2020 paper bib

    Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, Maosong Sun

  36. Graph Neural Networks: Methods, Applications, and Opportunities. arXiv 2021 paper bib

    Lilapati Waikhom, Ripon Patgiri

  37. Graph Neural Networks: Taxonomy, Advances and Trends. arXiv 2020 paper bib

    Yu Zhou, Haixia Zheng, Xin Huang

  38. Graph Representation Learning: A Survey. arXiv 2019 paper bib

    Fenxiao Chen, Yuncheng Wang, Bin Wang, C.-C. Jay Kuo

  39. Graph Self-Supervised Learning: A Survey. arXiv 2021 paper bib

    Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, Philip S. Yu

  40. Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future. Sensors 2021 paper bib

    David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton Fookes, Lars Petersson

  41. Introduction to Graph Neural Networks. Synthesis Lectures on Artificial Intelligence and Machine Learning 2020 paper bib

    Zhiyuan Liu, Jie Zhou

  42. Learning Representations of Graph Data -- A Survey. arXiv 2019 paper bib

    Mital Kinderkhedia

  43. Meta-Learning with Graph Neural Networks: Methods and Applications. arXiv 2021 paper bib

    Debmalya Mandal, Sourav Medya, Brian Uzzi, Charu Aggarwal

  44. Representation Learning for Dynamic Graphs: A Survey. J. Mach. Learn. Res. 2020 paper bib

    Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, Pascal Poupart

  45. Robustness of deep learning models on graphs: A survey. AI Open 2021 paper bib

    Jiarong Xu, Junru Chen, Siqi You, Zhiqing Xiao, Yang Yang, Jiangang Lu

  46. Self-Supervised Learning of Graph Neural Networks: A Unified Review. arXiv 2021 paper bib

    Yaochen Xie, Zhao Xu, Zhengyang Wang, Shuiwang Ji

  47. Spatio-Temporal Graph Neural Networks: A Survey. arXiv 2023 paper bib

    Zahraa Al Sahili, Mariette Awad

  48. Survey of Image Based Graph Neural Networks. arXiv 2021 paper bib

    Usman Nazir, He Wang, Murtaza Taj

  49. Tackling Graphical NLP problems with Graph Recurrent Networks. arXiv 2019 paper bib

    Linfeng Song

  50. The Evolution of Distributed Systems for Graph Neural Networks and their Origin in Graph Processing and Deep Learning: A Survey. arXiv 2023 paper bib

    Jana Vatter, Ruben Mayer, Hans-Arno Jacobsen

  51. Theory of Graph Neural Networks: Representation and Learning. arXiv 2022 paper bib

    Stefanie Jegelka

  52. Trustworthy Graph Neural Networks: Aspects, Methods and Trends. arXiv 2022 paper bib

    He Zhang, Bang Wu, Xingliang Yuan, Shirui Pan, Hanghang Tong, Jian Pei

Interpretability and Analysis

  1. A brief survey of visualization methods for deep learning models from the perspective of Explainable AI. macs.hw.ac.uk 2018 paper bib

    Ioannis Chalkiadakis

  2. A Survey of Explainable Reinforcement Learning. arXiv 2022 paper bib

    Stephanie Milani, Nicholay Topin, Manuela Veloso, Fei Fang

  3. A Survey of Methods for Explaining Black Box Models. ACM Comput. Surv. 2019 paper bib

    Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, Dino Pedreschi

  4. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Trans. Neural Networks Learn. Syst. 2021 paper bib

    Erico Tjoa, Cuntai Guan

  5. A Survey on Knowledge integration techniques with Artificial Neural Networks for seq-2-seq/time series models. arXiv 2020 paper bib

    Pramod Vadiraja, Muhammad Ali Chattha

  6. A Survey on Neural Network Interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 2021 paper bib

    Yu Zhang, Peter Tiño, Ales Leonardis, Ke Tang

  7. A Survey on the Explainability of Supervised Machine Learning. J. Artif. Intell. Res. 2021 paper bib

    Nadia Burkart, Marco F. Huber

  8. A Survey on Understanding, Visualizations, and Explanation of Deep Neural Networks. arXiv 2021 paper bib

    Atefeh Shahroudnejad

  9. Benchmarking and Survey of Explanation Methods for Black Box Models. arXiv 2021 paper bib

    Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pedreschi, Salvatore Rinzivillo

  10. Causal Interpretability for Machine Learning - Problems, Methods and Evaluation. SIGKDD Explor. 2020 paper bib

    Raha Moraffah, Mansooreh Karami, Ruocheng Guo, Adrienne Raglin, Huan Liu

  11. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Inf. Fusion 2020 paper bib

    Alejandro Barredo Arrieta, Natalia Díaz Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, Francisco Herrera

  12. Explainable Artificial Intelligence Approaches: A Survey. arXiv 2021 paper bib

    Sheikh Rabiul Islam, William Eberle, Sheikh Khaled Ghafoor, Mohiuddin Ahmed

  13. Explainable artificial intelligence: A survey. MIPRO 2018 paper bib

    Filip Karlo Dosilovic, Mario Brcic, Nikica Hlupic

  14. Explainable Automated Fact-Checking: A Survey. COLING 2020 paper bib

    Neema Kotonya, Francesca Toni

  15. Explainable Reinforcement Learning: A Survey. CD-MAKE 2020 paper bib

    Erika Puiutta, Eric M. S. P. Veith

  16. Foundations of Explainable Knowledge-Enabled Systems. Knowledge Graphs for eXplainable Artificial Intelligence 2020 paper bib

    Shruthi Chari, Daniel M. Gruen, Oshani Seneviratne, Deborah L. McGuinness

  17. How convolutional neural networks see the world - A survey of convolutional neural network visualization methods. Math. Found. Comput. 2018 paper bib

    Zhuwei Qin, Fuxun Yu, Chenchen Liu, Xiang Chen

  18. Interpretable Machine Learning - A Brief History, State-of-the-Art and Challenges. PKDD/ECML Workshops 2020 paper bib

    Christoph Molnar, Giuseppe Casalicchio, Bernd Bischl

  19. Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics 2019 paper bib

    Diogo V. Carvalho, Eduardo M. Pereira, Jaime S. Cardoso

  20. Measuring "Why" in Recommender Systems: a Comprehensive Survey on the Evaluation of Explainable Recommendation. arXiv 2022 paper bib

    Xu Chen, Yongfeng Zhang, Ji-Rong Wen

  21. On Interpretability of Artificial Neural Networks: A Survey. IEEE Trans. Radiat. Plasma Med. Sci. 2020 paper bib

    Feng-Lei Fan, Jinjun Xiong, Mengzhou Li, Ge Wang

  22. On the computation of counterfactual explanations - A survey. arXiv 2019 paper bib

    André Artelt, Barbara Hammer

  23. Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey. arXiv 2020 paper bib

    Arun Das, Paul Rad

  24. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018 paper bib

    Amina Adadi, Mohammed Berrada

  25. Survey of explainable machine learning with visual and granular methods beyond quasi-explanations. arXiv 2020 paper bib

    Boris Kovalerchuk, Muhammad Aurangzeb Ahmad, Ankur Teredesai

  26. Toward Transparent AI: A Survey on Interpreting the Inner Structures of Deep Neural Networks. arXiv 2022 paper bib

    Tilman Räuker, Anson Ho, Stephen Casper, Dylan Hadfield-Menell

  27. Understanding Neural Networks via Feature Visualization: A survey. Explainable AI 2019 paper bib

    Anh Nguyen, Jason Yosinski, Jeff Clune

  28. Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers. IEEE Trans. Vis. Comput. Graph. 2019 paper bib

    Fred Hohman, Minsuk Kahng, Robert S. Pienta, Duen Horng Chau

  29. Visual Interpretability for Deep Learning: a Survey. Frontiers Inf. Technol. Electron. Eng. 2018 paper bib

    Quanshi Zhang, Song-Chun Zhu

  30. Visualisation of Pareto Front Approximation: A Short Survey and Empirical Comparisons. CEC 2019 paper bib

    Huiru Gao, Haifeng Nie, Ke Li

  31. When will the mist clear? On the Interpretability of Machine Learning for Medical Applications: a survey. arXiv 2020 paper bib

    Antonio-Jesús Banegas-Luna, Jorge Peña-García, Adrian Iftene, Fiorella Guadagni, Patrizia Ferroni, Noemi Scarpato, Fabio Massimo Zanzotto, Andrés Bueno-Crespo, Horacio Pérez Sánchez

  32. XAI Methods for Neural Time Series Classification: A Brief Review. arXiv 2021 paper bib

    Ilija Simic, Vedran Sabol, Eduardo E. Veas

Knowledge Distillation

  1. A Selective Survey on Versatile Knowledge Distillation Paradigm for Neural Network Models. arXiv 2020 paper bib

    Jeong-Hoe Ku, Jihun Oh, Young-Yoon Lee, Gaurav Pooniwala, SangJeong Lee

  2. Distilling the Knowledge in a Neural Network. arXiv 2015 paper bib

    Geoffrey E. Hinton, Oriol Vinyals, Jeffrey Dean

  3. Knowledge Distillation: A Survey. Int. J. Comput. Vis. 2021 paper bib

    Jianping Gou, Baosheng Yu, Stephen J. Maybank, Dacheng Tao

Meta Learning

  1. A Comprehensive Overview and Survey of Recent Advances in Meta-Learning. arXiv 2020 paper bib

    Huimin Peng

  2. A Survey of Deep Meta-Learning. Artif. Intell. Rev. 2021 paper bib

    Mike Huisman, Jan N. van Rijn, Aske Plaat

  3. A Survey of Meta-Reinforcement Learning. arXiv 2023 paper bib

    Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa M. Zintgraf, Chelsea Finn, Shimon Whiteson

  4. Meta-learning for Few-shot Natural Language Processing: A Survey. arXiv 2020 paper bib

    Wenpeng Yin

  5. Meta-Learning in Neural Networks: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022 paper bib

    Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, Amos J. Storkey

  6. Meta-Learning: A Survey. arXiv 2018 paper bib

    Joaquin Vanschoren

Metric Learning

  1. A Survey on Metric Learning for Feature Vectors and Structured Data. arXiv 2013 paper bib

    Aurélien Bellet, Amaury Habrard, Marc Sebban

  2. A Tutorial on Distance Metric Learning: Mathematical Foundations, Algorithms, Experimental Analysis, Prospects and Challenges. Neurocomputing 2021 paper bib

    Juan-Luis Suárez, Salvador García, Francisco Herrera

ML and DL Applications

  1. A Comprehensive Survey on Community Detection with Deep Learning. arXiv 2021 paper bib

    Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu, Cécile Paris, Surya Nepal, Di Jin, Quan Z. Sheng, Philip S. Yu

  2. A Comprehensive Survey on Deep Music Generation: Multi-level Representations, Algorithms, Evaluations, and Future Directions. arXiv 2020 paper bib

    Shulei Ji, Jing Luo, Xinyu Yang

  3. A Comprehensive Survey on Graph Anomaly Detection with Deep Learning. arXiv 2021 paper bib

    Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Quan Z. Sheng, Hui Xiong

  4. A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection. arXiv 2019 paper bib

    Niloofar Yousefi, Marie Alaghband, Ivan Garibay

  5. A guide to deep learning in healthcare. Nature Medicine 2019 paper bib

    Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, Jeff Dean

  6. A Survey of Community Detection Approaches: From Statistical Modeling to Deep Learning. IEEE Trans. Knowl. Data Eng. 2023 paper bib

    Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Dongxiao He, Jia Wu, Philip S. Yu, Weixiong Zhang

  7. A Survey of Deep Learning Applications to Autonomous Vehicle Control. IEEE Trans. Intell. Transp. Syst. 2021 paper bib

    Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, Saber Fallah

  8. A Survey of Deep Learning Techniques for Autonomous Driving. J. Field Robotics 2020 paper bib

    Sorin Mihai Grigorescu, Bogdan Trasnea, Tiberiu T. Cocias, Gigel Macesanu

  9. A Survey of Machine Learning for Computer Architecture and Systems. ACM Comput. Surv. 2023 paper bib

    Nan Wu, Yuan Xie

  10. A Survey of Machine Learning Techniques for Detecting and Diagnosing COVID-19 from Imaging. Quant. Biol. 2022 paper bib

    Aishwarza Panday, Muhammad Ashad Kabir, Nihad Karim Chowdhury

  11. A Survey on Anomaly Detection for Technical Systems using LSTM Networks. Comput. Ind. 2021 paper bib

    Benjamin Lindemann, Benjamin Maschler, Nada Sahlab, Michael Weyrich

  12. A Survey on Deep Learning-based Non-Invasive Brain Signals:Recent Advances and New Frontiers. Journal of Neural Engineering 2019 paper bib

    Xiang Zhang, Lina Yao, Xianzhi Wang, Jessica Monaghan, David McAlpine, Yu Zhang

  13. A Survey on Machine Learning Applied to Dynamic Physical Systems. arXiv 2020 paper bib

    Sagar Verma

  14. A Survey on Practical Applications of Multi-Armed and Contextual Bandits. arXiv 2019 paper bib

    Djallel Bouneffouf, Irina Rish

  15. A Survey on Spatial and Spatiotemporal Prediction Methods. arXiv 2020 paper bib

    Zhe Jiang

  16. A Survey on the Role of Artificial Intelligence in the Prediction and Diagnosis of Schizophrenia. arXiv 2023 paper bib

    Narges Ramesh, Yasmin Ghodsi, Hamidreza Bolhasani

  17. A Survey on the Use of AI and ML for Fighting the COVID-19 Pandemic. arXiv 2020 paper bib

    Muhammad Nazrul Islam, Toki Tahmid Inan, Suzzana Rafi, Syeda Sabrina Akter, Iqbal H. Sarker, A. K. M. Najmul Islam

  18. A Survey on Traffic Signal Control Methods. arXiv 2019 paper bib

    Hua Wei, Guanjie Zheng, Vikash V. Gayah, Zhenhui Li

  19. Aesthetics, Personalization and Recommendation: A survey on Deep Learning in Fashion. arXiv 2021 paper bib

    Wei Gong, Laila Khalid

  20. AI and ML Accelerator Survey and Trends. HPEC 2022 paper bib

    Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, Jeremy Kepner

  21. Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial. IEEE Commun. Surv. Tutorials 2019 paper bib

    Mingzhe Chen, Ursula Challita, Walid Saad, Changchuan Yin, Mérouane Debbah

  22. Autonomous Vehicles on the Edge: A Survey on Autonomous Vehicle Racing. arXiv 2022 paper bib

    Johannes Betz, Hongrui Zheng, Alexander Liniger, Ugo Rosolia, Phillip Karle, Madhur Behl, Venkat Krovi, Rahul Mangharam

  23. Classification of Pathological and Normal Gait: A Survey. arXiv 2020 paper bib

    Ryan C. Saxe, Samantha Kappagoda, David K. A. Mordecai

  24. Classification supporting COVID-19 diagnostics based on patient survey data. arXiv 2020 paper bib

    Joanna Henzel, Joanna Tobiasz, Michal Kozielski, Malgorzata Bach, Pawel Foszner, Aleksandra Gruca, Mateusz Kania, Justyna Mika, Anna Papiez, Aleksandra Werner, Joanna Zyla, Jerzy Jaroszewicz, Joanna Polanska, Marek Sikora

  25. Computer Vision Methods for the Microstructural Analysis of Materials: The State-of-the-art and Future Perspectives. arXiv 2022 paper bib

    Khaled Alrfou, Amir Kordijazi, Tian Zhao

  26. Credit card fraud detection using machine learning: A survey. arXiv 2020 paper bib

    Yvan Lucas, Johannes Jurgovsky

  27. Cross-Modality Neuroimage Synthesis: A Survey. arXiv 2022 paper bib

    Guoyang Xie, Jinbao Wang, Yawen Huang, Yefeng Zheng, Feng Zheng, Yaochu Jin

  28. Current progress and open challenges for applying deep learning across the biosciences. Nat. Commun 2022 paper bib

    Nicolae Sapoval, Amirali Aghazadeh, Michael G. Nute, Dinler A. Antunes, Advait Balaji, Richard Baraniuk, C. J. Barberan, Ruth Dannenfelser, Chen Dun, Mohammadamin Edrisi, R. A. Leo Elworth, Bryce Kille, Anastasios Kyrillidis, Luay Nakhleh, Cameron R. Wolfe, Zhi Yan, Vicky Yao & Todd J. Treangen

  29. Deep Learning for Click-Through Rate Estimation. IJCAI 2021 paper bib

    Weinan Zhang, Jiarui Qin, Wei Guo, Ruiming Tang, Xiuqiang He

  30. Deep Learning for Spatio-Temporal Data Mining: A Survey. IEEE Trans. Knowl. Data Eng. 2022 paper bib

    Senzhang Wang, Jiannong Cao, Philip S. Yu

  31. Deep learning models for predictive maintenance: a survey, comparison, challenges and prospect. arXiv 2020 paper bib

    Oscar Serradilla, Ekhi Zugasti, Urko Zurutuza

  32. Deep Learning-based Spacecraft Relative Navigation Methods: A Survey. arXiv 2021 paper bib

    Jianing Song, Duarte Rondao, Nabil Aouf

  33. Didn't see that coming: a survey on non-verbal social human behavior forecasting. DYAD@ICCV 2021 paper bib

    Germán Barquero, Johnny Núñez, Sergio Escalera, Zhen Xu, Wei-Wei Tu, Isabelle Guyon, Cristina Palmero

  34. DL-Traff: Survey and Benchmark of Deep Learning Models for Urban Traffic Prediction. CIKM 2021 paper bib

    Renhe Jiang, Du Yin, Zhaonan Wang, Yizhuo Wang, Jiewen Deng, Hangchen Liu, Zekun Cai, Jinliang Deng, Xuan Song, Ryosuke Shibasaki

  35. Event Prediction in the Big Data Era: A Systematic Survey. ACM Comput. Surv. 2022 paper bib

    Liang Zhao

  36. Fashion Meets Computer Vision: A Survey. ACM Comput. Surv. 2022 paper bib

    Wen-Huang Cheng, Sijie Song, Chieh-Yun Chen, Shintami Chusnul Hidayati, Jiaying Liu

  37. Going Deeper Into Face Detection: A Survey. arXiv 2021 paper bib

    Shervin Minaee, Ping Luo, Zhe Lin, Kevin W. Bowyer

  38. Graph Representation Learning in Biomedicine. arXiv 2021 paper bib

    Michelle M. Li, Kexin Huang, Marinka Zitnik

  39. Graph-based Deep Learning for Communication Networks: A Survey. Comput. Commun. 2022 paper bib

    Weiwei Jiang

  40. How Developers Iterate on Machine Learning Workflows - A Survey of the Applied Machine Learning Literature. arXiv 2018 paper bib

    Doris Xin, Litian Ma, Shuchen Song, Aditya G. Parameswaran

  41. Human Action Recognition from Various Data Modalities: A Review. IEEE Trans. Pattern Anal. Mach. Intell. 2023 paper bib

    Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, Gang Wang, Jun Liu

  42. Known Operator Learning and Hybrid Machine Learning in Medical Imaging - A Review of the Past, the Present, and the Future. arXiv 2021 paper bib

    Andreas Maier, Harald Köstler, Marco Heisig, Patrick Krauss, Seung Hee Yang

  43. Machine Learning Aided Static Malware Analysis: A Survey and Tutorial. arXiv 2018 paper bib

    Andrii Shalaginov, Sergii Banin, Ali Dehghantanha, Katrin Franke

  44. Machine Learning and Deep Learning -- A review for Ecologists. Methods in Ecology and Evolution 2022 paper bib

    Maximilian Pichler, Florian Hartig

  45. Machine Learning for Cataract Classification and Grading on Ophthalmic Imaging Modalities: A Survey. arXiv 2020 paper bib

    Xiaoqing Zhang, Jiansheng Fang, Yan Hu, Yanwu Xu, Risa Higashita, Jiang Liu

  46. Machine Learning for Electronic Design Automation: A Survey. ACM Trans. Design Autom. Electr. Syst. 2021 paper bib

    Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, Xuefei Ning, Yuzhe Ma, Haoyu Yang, Bei Yu, Huazhong Yang, Yu Wang

  47. Machine Learning for Survival Analysis: A Survey. ACM Comput. Surv. 2019 paper bib

    Ping Wang, Yan Li, Chandan K. Reddy

  48. Medical Image Segmentation with 3D Convolutional Neural Networks: A Survey. Neurocomputing 2022 paper bib

    S. Niyas, S. J. Pawan, M. Anand Kumar, Jeny Rajan

  49. MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design. arXiv 2022 paper bib

    Yuanqi Du, Tianfan Fu, Jimeng Sun, Shengchao Liu

  50. Multi-modal Sensor Fusion for Auto Driving Perception: A Survey. arXiv 2022 paper bib

    Keli Huang, Botian Shi, Xiang Li, Xin Li, Siyuan Huang, Yikang Li

  51. Physics-Guided Deep Learning for Dynamical Systems: A Survey. arXiv 2021 paper bib

    Rui Wang

  52. Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications. arXiv 2022 paper bib

    Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng, Hang Su, Jun Zhu

  53. Predicting the Future from First Person (Egocentric) Vision: A Survey. Comput. Vis. Image Underst. 2021 paper bib

    Ivan Rodin, Antonino Furnari, Dimitrios Mavroeidis, Giovanni Maria Farinella

  54. Prediction of neonatal mortality in Sub-Saharan African countries using data-level linkage of multiple surveys. arXiv 2020 paper bib

    Girmaw Abebe Tadesse, Celia Cintas, Skyler Speakman, Komminist Weldemariam

  55. Requirement Engineering Challenges for AI-intense Systems Development. WAIN@ICSE 2021 paper bib

    Hans-Martin Heyn, Eric Knauss, Amna Pir Muhammad, Olof Eriksson, Jennifer Linder, Padmini Subbiah, Shameer Kumar Pradhan, Sagar Tungal

  56. Short-term Traffic Prediction with Deep Neural Networks: A Survey. IEEE Access 2021 paper bib

    Kyungeun Lee, Moonjung Eo, Euna Jung, Yoonjin Yoon, Wonjong Rhee

  57. Should I Raise The Red Flag? A comprehensive survey of anomaly scoring methods toward mitigating false alarms. arXiv 2019 paper bib

    Zahra Zohrevand, Uwe Glässer

  58. The Threat of Adversarial Attacks on Machine Learning in Network Security - A Survey. arXiv 2019 paper bib

    Olakunle Ibitoye, Rana Abou Khamis, Ashraf Matrawy, M. Omair Shafiq

  59. Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey. IEEE Access 2018 paper bib

    Naveed Akhtar, Ajmal S. Mian

  60. Towards Controllable Protein Design with Conditional Transformers. Nat. Mach. Intell. 2022 paper bib

    Noelia Ferruz, Birte Höcker

  61. Transformers in Remote Sensing: A Survey. arXiv 2022 paper bib

    Abdulaziz Amer Aleissaee, Amandeep Kumar, Rao Muhammad Anwer, Salman Khan, Hisham Cholakkal, Gui-Song Xia, Fahad Shahbaz Khan

  62. Transformers in Time Series: A Survey. arXiv 2022 paper bib

    Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, Liang Sun

  63. Understanding racial bias in health using the Medical Expenditure Panel Survey data. arXiv 2019 paper bib

    Moninder Singh, Karthikeyan Natesan Ramamurthy

  64. Urban flows prediction from spatial-temporal data using machine learning: A survey. arXiv 2019 paper bib

    Peng Xie, Tianrui Li, Jia Liu, Shengdong Du, Xin Yang, Junbo Zhang

  65. Using Deep Learning for Visual Decoding and Reconstruction from Brain Activity: A Review. arXiv 2021 paper bib

    Madison Van Horn

  66. Utilising Graph Machine Learning within Drug Discovery and Development. arXiv 2020 paper bib

    Thomas Gaudelet, Ben Day, Arian R. Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu, Jeremy B. R. Hayter, Richard Vickers, Charles Roberts, Jian Tang, David Roblin, Tom L. Blundell, Michael M. Bronstein, Jake P. Taylor-King

Model Compression and Acceleration

  1. A Survey of Model Compression and Acceleration for Deep Neural Networks. arXiv 2017 paper bib

    Yu Cheng, Duo Wang, Pan Zhou, Tao Zhang

  2. A Survey of Quantization Methods for Efficient Neural Network Inference. arXiv 2021 paper bib

    Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer

  3. A Survey on Deep Neural Network Compression: Challenges, Overview, and Solutions. arXiv 2020 paper bib

    Rahul Mishra, Hari Prabhat Gupta, Tanima Dutta

  4. A Survey on GAN Acceleration Using Memory Compression Technique. arXiv 2021 paper bib

    Dina Tantawy, Mohamed Zahran, Amr Wassal

  5. A Survey on Methods and Theories of Quantized Neural Networks. arXiv 2018 paper bib

    Yunhui Guo

  6. A Survey on Model Compression and Acceleration for Pretrained Language Models. arXiv 2022 paper bib

    Canwen Xu, Julian J. McAuley

  7. An Overview of Neural Network Compression. arXiv 2020 paper bib

    James O'Neill

  8. Compression of Deep Learning Models for Text: A Survey. ACM Trans. Knowl. Discov. Data 2022 paper bib

    Manish Gupta, Puneet Agrawal

  9. Dimensionality Reduced Training by Pruning and Freezing Parts of a Deep Neural Network, a Survey. arXiv 2022 paper bib

    Paul Wimmer, Jens Mehnert, Alexandru Paul Condurache

  10. Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better. arXiv 2021 paper bib

    Gaurav Menghani

  11. Pruning Algorithms to Accelerate Convolutional Neural Networks for Edge Applications: A Survey. arXiv 2020 paper bib

    Jiayi Liu, Samarth Tripathi, Unmesh Kurup, Mohak Shah

  12. Pruning and Quantization for Deep Neural Network Acceleration: A Survey. arXiv 2021 paper bib

    Tailin Liang, John Glossner, Lei Wang, Shaobo Shi

  13. Survey of Machine Learning Accelerators. HPEC 2020 paper bib

    Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, Jeremy Kepner

  14. Survey on Large Scale Neural Network Training. arXiv 2022 paper bib

    Julia Gusak, Daria Cherniuk, Alena Shilova, Alexandr Katrutsa, Daniel Bershatsky, Xunyi Zhao, Lionel Eyraud-Dubois, Oleg Shlyazhko, Denis Dimitrov, Ivan V. Oseledets, Olivier Beaumont

Multi-Label Learning

  1. A Review on Multi-Label Learning Algorithms. IEEE Trans. Knowl. Data Eng. 2014 paper bib

    Min-Ling Zhang, Zhi-Hua Zhou

  2. Multi-Label Classification: An Overview. Int. J. Data Warehous. Min. 2007 paper bib

    Grigorios Tsoumakas, Ioannis Katakis

  3. Multi-label learning: a review of the state of the art and ongoing research. WIREs Data Mining Knowl. Discov. 2014 paper bib

    Eva Lucrecia Gibaja Galindo, Sebastián Ventura

  4. The Emerging Trends of Multi-Label Learning. arXiv 2020 paper bib

    Weiwei Liu, Xiaobo Shen, Haobo Wang, Ivor W. Tsang

Multi-Task and Multi-View Learning

  1. A brief review on multi-task learning. Multim. Tools Appl. 2018 paper bib

    Kim-Han Thung, Chong-Yaw Wee

  2. A Survey on Multi-Task Learning. IEEE Trans. Knowl. Data Eng. 2022 paper bib

    Yu Zhang, Qiang Yang

  3. A Survey on Multi-view Learning. arXiv 2013 paper bib

    Chang Xu, Dacheng Tao, Chao Xu

  4. An overview of multi-task learning. National Science Review 2017 paper bib

    Yu Zhang, Qiang Yang

  5. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv 2017 paper bib

    Sebastian Ruder

  6. Multi-Task Learning for Dense Prediction Tasks: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022 paper bib

    Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai, Luc Van Gool

  7. Multi-task learning for natural language processing in the 2020s: where are we going?. Pattern Recognit. Lett. 2020 paper bib

    Joseph Worsham, Jugal Kalita

  8. Multi-Task Learning with Deep Neural Networks: A Survey. arXiv 2020 paper bib

    Michael Crawshaw

Online Learning

  1. A Survey of Algorithms and Analysis for Adaptive Online Learning. J. Mach. Learn. Res. 2017 paper bib

    H. Brendan McMahan

  2. Online Continual Learning in Image Classification: An Empirical Survey. Neurocomputing 2022 paper bib

    Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, Scott Sanner

  3. Online Learning: A Comprehensive Survey. Neurocomputing 2021 paper bib

    Steven C. H. Hoi, Doyen Sahoo, Jing Lu, Peilin Zhao

  4. Preference-based Online Learning with Dueling Bandits: A Survey. J. Mach. Learn. Res. 2021 paper bib

    Viktor Bengs, Róbert Busa-Fekete, Adil El Mesaoudi-Paul, Eyke Hüllermeier

Optimization

  1. A Survey of Optimization Methods from a Machine Learning Perspective. IEEE Trans. Cybern. 2020 paper bib

    Shiliang Sun, Zehui Cao, Han Zhu, Jing Zhao

  2. A Systematic and Meta-analysis Survey of Whale Optimization Algorithm. Comput. Intell. Neurosci. 2019 paper bib

    Hardi M. Mohammed, Shahla U. Umar, Tarik A. Rashid

  3. An overview of gradient descent optimization algorithms. arXiv 2016 paper bib

    Sebastian Ruder

  4. Convex Optimization Overview. CiteSeerX 2008 paper bib

    Zico Kolter, Honglak Lee

  5. Evolutionary Multitask Optimization: a Methodological Overview, Challenges and Future Research Directions. arXiv 2021 paper bib

    Eneko Osaba, Aritz D. Martinez, Javier Del Ser

  6. Gradient Boosting Machine: A Survey. arXiv 2019 paper bib

    Zhiyuan He, Danchen Lin, Thomas Lau, Mike Wu

  7. Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond. IEEE Trans. Pattern Anal. Mach. Intell. 2022 paper bib

    Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, Zhouchen Lin

  8. Learning Combinatorial Optimization on Graphs: A Survey with Applications to Networking. IEEE Access 2020 paper bib

    Natalia Vesselinova, Rebecca Steinert, Daniel F. Perez-Ramirez, Magnus Boman

  9. Nature-Inspired Optimization Algorithms: Research Direction and Survey. arXiv 2021 paper bib

    Rohit Kumar Sachan, Dharmender Singh Kushwaha

  10. Optimization for deep learning: theory and algorithms. arXiv 2019 paper bib

    Ruoyu Sun

  11. Optimization Problems for Machine Learning: A Survey. Eur. J. Oper. Res. 2021 paper bib

    Claudio Gambella, Bissan Ghaddar, Joe Naoum-Sawaya

  12. Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives. Mach. Learn. Knowl. Extr. 2019 paper bib

    Saptarshi Sengupta, Sanchita Basak, Richard A. Peters

  13. Why Do Local Methods Solve Nonconvex Problems?. Beyond the Worst-Case Analysis of Algorithms 2020 paper bib

    Tengyu Ma

Semi-Supervised, Weakly-Supervised and Unsupervised Learning

  1. A Brief Introduction to Weakly Supervised Learning. National Science Review 2018 paper bib

    Zhi-Hua Zhou

  2. A Survey of Unsupervised Dependency Parsing. COLING 2020 paper bib

    Wenjuan Han, Yong Jiang, Hwee Tou Ng, Kewei Tu

  3. A Survey on Deep Semi-supervised Learning. arXiv 2021 paper bib

    Xiangli Yang, Zixing Song, Irwin King, Zenglin Xu

  4. A survey on Semi-, Self- and Unsupervised Learning for Image Classification. IEEE Access 2021 paper bib

    Lars Schmarje, Monty Santarossa, Simon-Martin Schröder, Reinhard Koch

  5. A Survey on Semi-Supervised Learning Techniques. arXiv 2014 paper bib

    V. Jothi Prakash, L. M. Nithya

  6. Deep Learning for Weakly-Supervised Object Detection and Object Localization: A Survey. arXiv 2021 paper bib

    Feifei Shao, Long Chen, Jian Shao, Wei Ji, Shaoning Xiao, Lu Ye, Yueting Zhuang, Jun Xiao

  7. Graph-based Semi-supervised Learning: A Comprehensive Review. arXiv 2021 paper bib

    Zixing Song, Xiangli Yang, Zenglin Xu, Irwin King

  8. Improvability Through Semi-Supervised Learning: A Survey of Theoretical Results. arXiv 2019 paper bib

    Alexander Mey, Marco Loog

  9. Learning from positive and unlabeled data: a survey. Mach. Learn. 2020 paper bib

    Jessa Bekker, Jesse Davis

  10. Robust Deep Semi-Supervised Learning: A Brief Introduction. arXiv 2022 paper bib

    Lan-Zhe Guo, Zhi Zhou, Yu-Feng Li

  11. Self-Supervised Learning for Recommender Systems: A Survey. arXiv 2022 paper bib

    Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, Zi Huang

  12. Self-Supervised Learning for Videos: A Survey. arXiv 2022 paper bib

    Madeline C. Schiappa, Yogesh S. Rawat, Mubarak Shah

  13. Unsupervised Cross-Lingual Representation Learning. ACL 2019 paper bib

    Sebastian Ruder, Anders Søgaard, Ivan Vulic

Transfer Learning

  1. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021 paper bib

    Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, Qing He

  2. A Survey of Unsupervised Deep Domain Adaptation. ACM Trans. Intell. Syst. Technol. 2020 paper bib

    Garrett Wilson, Diane J. Cook

  3. A Survey on Deep Transfer Learning. ICANN 2018 paper bib

    Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, Chunfang Liu

  4. A survey on domain adaptation theory: learning bounds and theoretical guarantees. arXiv 2020 paper bib

    Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, Younès Bennani

  5. A Survey on Negative Transfer. IEEE/CAA Journal of Automatica Sinica 2020 paper bib

    Wen Zhang, Lingfei Deng, Lei Zhang, Dongrui Wu

  6. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010 paper bib

    Sinno Jialin Pan, Qiang Yang

  7. A Survey on Transfer Learning in Natural Language Processing. arXiv 2020 paper bib

    Zaid Alyafeai, Maged Saeed AlShaibani, Irfan Ahmad

  8. Evolution of transfer learning in natural language processing. arXiv 2019 paper bib

    Aditya Malte, Pratik Ratadiya

  9. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 2020 paper bib

    Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu

  10. Neural Unsupervised Domain Adaptation in NLP---A Survey. COLING 2020 paper bib

    Alan Ramponi, Barbara Plank

  11. Source-Free Unsupervised Domain Adaptation: A Survey. arXiv 2023 paper bib

    Yuqi Fang, Pew-Thian Yap, Weili Lin, Hongtu Zhu, Mingxia Liu

  12. Transfer Adaptation Learning: A Decade Survey. arXiv 2019 paper bib

    Lei Zhang

  13. Transfer Learning for Reinforcement Learning Domains: A Survey. J. Mach. Learn. Res. 2009 paper bib

    Matthew E. Taylor, Peter Stone

  14. Transfer Learning in Deep Reinforcement Learning: A Survey. arXiv 2020 paper bib

    Zhuangdi Zhu, Kaixiang Lin, Jiayu Zhou

  15. Transferability in Deep Learning: A Survey. arXiv 2022 paper bib

    Junguang Jiang, Yang Shu, Jianmin Wang, Mingsheng Long

Trustworthy Machine Learning

  1. A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability. arXiv 2022 paper bib

    Enyan Dai, Tianxiang Zhao, Huaisheng Zhu, Junjie Xu, Zhimeng Guo, Hui Liu, Jiliang Tang, Suhang Wang

  2. A Survey of Neural Trojan Attacks and Defenses in Deep Learning. arXiv 2022 paper bib

    Jie Wang, Ghulam Mubashar Hassan, Naveed Akhtar

  3. A Survey of Privacy Attacks in Machine Learning. arXiv 2020 paper bib

    Maria Rigaki, Sebastian Garcia

  4. A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 2020 paper bib

    Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min Wu, Xinping Yi

  5. A Survey on Bias and Fairness in Machine Learning. ACM Comput. Surv. 2022 paper bib

    Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, Aram Galstyan

  6. Backdoor Learning: A Survey. arXiv 2020 paper bib

    Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, Shu-Tao Xia

  7. Differential Privacy and Machine Learning: a Survey and Review. arXiv 2014 paper bib

    Zhanglong Ji, Zachary Chase Lipton, Charles Elkan

  8. Fairness in Machine Learning: A Survey. arXiv 2020 paper bib

    Simon Caton, Christian Haas

  9. Local Differential Privacy and Its Applications: A Comprehensive Survey. arXiv 2020 paper bib

    Mengmeng Yang, Lingjuan Lyu, Jun Zhao, Tianqing Zhu, Kwok-Yan Lam

  10. Privacy in Deep Learning: A Survey. arXiv 2020 paper bib

    Fatemehsadat Mireshghallah, Mohammadkazem Taram, Praneeth Vepakomma, Abhishek Singh, Ramesh Raskar, Hadi Esmaeilzadeh

  11. Taxonomy of Machine Learning Safety: A Survey and Primer. ACM Comput. Surv. 2023 paper bib

    Sina Mohseni, Haotao Wang, Chaowei Xiao, Zhiding Yu, Zhangyang Wang, Jay Yadawa

  12. Technology Readiness Levels for Machine Learning Systems. arXiv 2021 paper bib

    Alexander Lavin, Ciarán M. Gilligan-Lee, Alessya Visnjic, Siddha Ganju, Dava Newman, Sujoy Ganguly, Danny Lange, Atilim Günes Baydin, Amit Sharma, Adam Gibson, Yarin Gal, Eric P. Xing, Chris Mattmann, James Parr

  13. The Creation and Detection of Deepfakes: A Survey. ACM Comput. Surv. 2022 paper bib

    Yisroel Mirsky, Wenke Lee

  14. Toward Transparent AI: A Survey on Interpreting the Inner Structures of Deep Neural Networks. arXiv 2022 paper bib

    Tilman Räuker, Anson Ho, Stephen Casper, Dylan Hadfield-Menell

  15. Trustworthy AI: From Principles to Practices. ACM Comput. Surv. 2023 paper bib

    Bo Li, Peng Qi, Bo Liu, Shuai Di, Jingen Liu, Jiquan Pei, Jinfeng Yi, Bowen Zhou

  16. Trustworthy Graph Neural Networks: Aspects, Methods and Trends. arXiv 2022 paper bib

    He Zhang, Bang Wu, Xingliang Yuan, Shirui Pan, Hanghang Tong, Jian Pei

  17. Tutorial: Safe and Reliable Machine Learning. arXiv 2019 paper bib

    Suchi Saria, Adarsh Subbaswamy

  18. When Machine Learning Meets Privacy: A Survey and Outlook. ACM Comput. Surv. 2022 paper bib

    Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, Zihuai Lin

  19. Wild Patterns Reloaded: A Survey of Machine Learning Security against Training Data Poisoning. arXiv 2022 paper bib

    Antonio Emanuele Cinà, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon, Werner Zellinger, Bernhard Alois Moser, Alina Oprea, Battista Biggio, Marcello Pelillo, Fabio Roli

Team Members

The project is maintained by

Natural Language Processing Lab., School of Computer Science and Engineering, Northeastern University

NiuTrans Research

Please feel free to contact us if you have any questions (libei_neu [at] outlook.com).

Acknowledge

We would like to thank the people who have contributed to this project. They are

Chuanhao Lv, Kaiyan Chang, Ziyang Wang, Shuhan Zhou, Nuo Xu, Bei Li, Yinqiao Li, Quan Du, Xin Zeng, Laohu Wang, Chenglong Wang, Xiaoqian Liu, Xuanjun Zhou, Jingnan Zhang, Yongyu Mu, Zefan Zhou, Yanhong Jiang, Xinyang Zhu, Xingyu Liu, Dong Bi, Ping Xu, Zijian Li, Fengning Tian, Hui Liu, Kai Feng, Yuhao Zhang, Chi Hu, Di Yang, Lei Zheng, Hexuan Chen, Zeyang Wang, Tengbo Liu, Xia Meng, Weiqiao Shan, Tao Zhou, Runzhe Cao, Yingfeng Luo, Binghao Wei, Wandi Xu, Yan Zhang, Yichao Wang, Mengyu Ma, Zihao Liu