Home

Awesome

Introduction

Implementation for NeurIPS 2019 paper : <img src="https://github.com/Newbeeer/L_DMI/blob/master/title.png" width="450px" />

paper link: https://arxiv.org/abs/1909.03388

[Slide]

<img src="https://github.com/Newbeeer/L_DMI/blob/master/graph.png" width="650px" />

Fashion MNIST dataset

python3 fashion.py --r noisy_amount --s seed --c case_num --device device_num

noise_amount: the amount of noise amount r of label flipping. (0 <= r <= 1)
seed: random seed
case_num :  1: class-independent; 2: class-dependent (a); 3: class-dependent (b)
device_num: GPU number

CIFAR-10 dataset:

Dog & Cat datasete

Link to the dataset: https://www.kaggle.com/c/dogs-vs-cats

MR dataset

Clothing1M dataset

Link to the dataset: https://drive.google.com/drive/folders/0B67_d0rLRTQYU2E4aHNHaE1uMTg?resourcekey=0-_FShcGYZwIyESjnz6S6aLQ&usp=sharing . We have split the data into clean_test.txt, clean_train. txt,clean_val.txt and noisy_train.txt in our ./clothing directory.

TODO:

Combine all the APIs to dataset into one file.