Awesome
Digital Soul
Unified Compute Platform - CPU, GPU, FPGA, Quantum Computing
<img src="https://github.com/NeuralDreamResearch/DigitalSoulPy/blob/main/Logo.jpeg?raw=true" height=300>DigitalSoul is a Python module designed to bridge the gap between classical, quantum, and potentially hardware-accelerated computation. It provides flexible data structures and a node-based execution model, allowing you to express computations that can be seamlessly executed across CPU, GPU, quantum simulators, and potentially FPGAs.
Key Features
- Customizable Data Types: Define Boolean (Bool), integer (Int, UInt), floating-point (Float), quantum states (Qudit), quantum gates (QuantumGate), and multidimensional tensors (Tensor) to suit your computational needs.
- Node-Based Computation: Build computational graphs using nodes that represent operations (e.g., LogicalAnd, LogicalOr). Nodes manage input/output data through "Edges".
- Multi-Backend Execution: Execute computations using NumPy, Cupy (for GPU), TensorFlow, and internal quantum simulator
- VHDL Transpilation: Translate computational graphs into VHDL code, opening the door for hardware synthesis on FPGAs.
Installation
From PyPI
pip install setuptools wheel pybind11
pip install DigitalSoul
Also download numpy
, cupy
and tensorflow
if you want to access richer executors
Quick Example
import DigitalSoul as ds
e1=ds.Edge(ds.Bool(False))
e2=ds.Edge(ds.Bool(False))
e3=ds.Edge(ds.Bool(None))
e4=ds.Edge(ds.Bool(True))
e5=ds.Edge(ds.Bool(None))
e6=ds.Edge(ds.Bool(True))
e7=ds.Edge(ds.Bool(None))
e8=ds.Edge(ds.Bool(None))
print("\n"*4)
or_gate=ds.LogicalOr((e1,e2), e3)
xor_gate=ds.LogicalXor((e3,e4), e8)
not_gate=ds.LogicalNot(e8,e5)
and_gate1=ds.LogicalAnd((e5,e6), e7)
print(e7)
print("Executing function")
and_gate1.execute("cp")
print(e7)
and_gate1.q_stream()
print("\n",e7.sv)
print("\n"*3)
print(and_gate1.transpile("vhdl"))
output:
<pre> Edge_6 holding Bool_6 value=None entropy=1 Executing function Edge_6 holding Bool_6 value=False entropy=0 2-levelQudit_3 value=[1. 0.] entropy=0 library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity main is Port( Bool_1:in std_logic; Bool_0:in std_logic; Bool_3:in std_logic; Bool_5:in std_logic; Bool_6:out std_logic ); end main; architecture Behavioral of main is signal Bool_2:std_logic; signal Bool_4:std_logic; signal Bool_7:std_logic; begin Bool_7<=Bool_2 xor Bool_3; Bool_2<=Bool_0 or Bool_1; Bool_4<=not(Bool_7); Bool_6<=Bool_4 and Bool_5; end architecture Behavioral; </pre>As you can see from output, the value of output edge(e7, shown as Edge_6) is uncertain before computation. Hence, it has maximum entropy. As soon as value is computed and certainly known, the entropy is zero. Then, program is capable of generating VHDL code of corresponding computational graph. Additionally, it simulated quantum equivalent of the computaitonal graph with Non-Hermetian Gates
Tree
<pre> |----Bool-------------------| | |---__init__(value=None) | |---entropy() | |---name() | |---__repr__() | | |----Int--------------------| | |---__init__(value=None,depth=32) | |---bounds() | |---entropy() | |---name() | |---__repr__() | | |----UInt-------------------| | |---__init__(value=None,depth=32) | |---entropy() | |---name() | |---__repr__() | | |----Float------------------| | |---__init__(value=None,exponent=8,mantissa=23) | |---float_info() | |---entropy() | |---name() | |---__repr__() | | |----Qudit------------------| | |---__init__(value,num_levels=None,utol=1e-9) | |---num_levels() | |---entropy() | |---name() | |---__repr__() | |---__and__(other) | | |----QuantumGate(object)----| | |---__init__(data,utol=1e-8) | |---__repr__() | |---data() | |---value() | |---set_data(data,utol) | |---num_levels() | |---entropy() | |---name() | |---__and__(other) | |---__call__(sv) | | |----NonHermitianGate-------| | |---__init__(data) | |---value() | |---name() | |---__call__(sv) | |---__repr__() | | |----Tensor(object)---------| | |---__init__(value,dtype=Float(0),shape=(1,)) | |---entropy() | |---__repr__() | |---name() | | |----Edge(object)-----------| | |---__init__(sculk) | |---vhdl() | |---twoscpl(x | |---name() | |---__repr__() | |---entropy() | |---set_predecessor(node) | |---unpack(executor="np") | |---q_info() | | |----Node(object)-----------| | |---__init__(in_terminals,out_terminals,ops) | |---execute(executor="np") | |---edge_accumulator() | |---input_accumulator() | |---node_accumulator() | |---transpile(target="vhdl") | |---qv_contemplate() | |---q_stream() | | |----LogicalAnd(Node)-------| | |---__init__(in_terminals,out_terminals,ops) | |----LogicalOr(Node)--------| | |---__init__(in_terminals,out_terminals,ops) | |----LogicalXor(Node)--------| | |---__init__(in_terminals,out_terminals,ops) | |----LogicalNot(Node)--------| | |---__init__(in_terminals,out_terminals,ops) | |----QN---------------------| |---i |---x |---y |---z |---h |---cx |---ccx </pre>Roadmap
- Implementing more nodes
- Improved hardware synthesis flow with VHDL transpilation.
- Custom node creation guide.
Contributing
We welcome contributions to DigitalSoul!
License
DigitalSoul is distributed under the MIT License (see LICENSE.md).