Awesome
Task Agnostic Representation Consolidation: A Self-supervised based Continual Learning Approach
Official Repository for for CoLLAs 2022 paper "Task Agnostic Representation Consolidation: A Self-supervised based Continual Learning Approach"
This repo is built on top of the Mammoth continual learning framework
Setup
- Use
python main.py
to run experiments. - Use argument
--load_best_args
to use the best hyperparameters for each of the evaluation setting from the paper.
Examples:
## How to run?
python --model er --dataset seq-cifar10 --img_size 32 --buffer_size 200 --load_best_args --train_ssl --ssl_train_percentage 0.9 --tensorboard --multitask --ce_weight 1 --rot_weight 1 --notes 'ER + TARC'
python --model si --dataset rot-mnist --img_size 28 --load_best_args --train_ssl --ssl_train_percentage 0.6 --tensorboard --multitask --ce_weight 1 --rot_weight 1 --notes 'SI + TARC'
python --model ewc_on --dataset rot-mnist --img_size 28 --load_best_args --train_ssl --ssl_train_percentage 0.6 --tensorboard --multitask --ce_weight 1 --rot_weight 1 --notes 'oEWC + TARC'
+ For multi-objective learning:
--multitask --ce_weight 1 --rot_weight 1
+ For task-agnostic learning:
--train_ssl --ssl_train_percentage 0.9
Class-Il / Task-IL settings
- Sequential CIFAR-10
- Sequential CIFAR-100
- Sequential Tiny ImageNet
- Sequential STL-10
Domain-IL settings
- Rotated MNIST
General Continual Learning setting
- MNIST-360
Requirements
-
torch==1.7.0
-
torchvision==0.9.0
-
quadprog==0.1.7
Cite Our Work
If you find the code useful in your research, please consider citing our paper:
@InProceedings{pmlr-v199-bhat22a,
title = {Task Agnostic Representation Consolidation: a Self-supervised based Continual Learning Approach},
author = {Bhat, Prashant Shivaram and Zonooz, Bahram and Arani, Elahe},
booktitle = {Proceedings of The 1st Conference on Lifelong Learning Agents},
pages = {390--405},
year = {2022},
editor = {Chandar, Sarath and Pascanu, Razvan and Precup, Doina},
volume = {199},
series = {Proceedings of Machine Learning Research},
month = {22--24 Aug},
publisher = {PMLR},
pdf = {https://proceedings.mlr.press/v199/bhat22a/bhat22a.pdf},
url = {https://proceedings.mlr.press/v199/bhat22a.html},
}