Awesome
Language Models as Knowledge Embeddings
Source code for the paper Language Models as Knowledge Embeddings
Notice
[June 2023] We recently identified a data leakage issue in our code that, during prediction, we inadvertently leaked degree information about the entities to be predicted. This unintentionally provided a shortcut for the model, which affected the experimental results to some extent. We have fixed this issue and re-conducted our experiments, and updated the paper accordingly. The revised results do not impact the majority of the paper's conclusions and contributions. The method continues to achieve state-of-the-art (SOTA) performance on the WN18RR, FB13, and WN11 datasets, compared to previous works. However, on the FB15k-237 dataset, the model's performance has declined to a certain extent and underperforms state-of-the-art structured-based methods. We sincerely apologize for this error.
Updated Results:
WN18RR
Methods | MR | MRR | Hits@1 | Hits@3 | Hits@10 |
---|---|---|---|---|---|
TransE | 2300 | 0.243 | 0.043 | 0.441 | 0.532 |
DistMult | 5110 | 0.430 | 0.390 | 0.440 | 0.490 |
ComplEx | 5261 | 0.440 | 0.410 | 0.460 | 0.510 |
RotatE | 3340 | 0.476 | 0.428 | 0.492 | 0.571 |
TuckER | - | 0.470 | 0.443 | 0.482 | 0.526 |
HAKE | - | 0.497 | 0.452 | 0.516 | 0.582 |
CoKE | - | 0.484 | 0.450 | 0.496 | 0.553 |
---------------------------------------- | ---- | ----- | -------- | -------- | --------- |
Pretrain-KGE_TransE | 1747 | 0.235 | - | - | 0.557 |
KG-BERT | 97 | 0.216 | 0.041 | 0.302 | 0.524 |
StAR_BERT-base | 99 | 0.364 | 0.222 | 0.436 | 0.647 |
MEM-KGC_BERT-base_(w/o EP) | - | 0.533 | 0.473 | 0.570 | 0.636 |
MEM-KGC_BERT-base_(w/ EP) | - | 0.557 | 0.475 | 0.604 | 0.704 |
C-LMKE_BERT-base | 79 | 0.619 | 0.523 | 0.671 | 0.789 |
FB15k-237
Methods | MR | MRR | Hits@1 | Hits@3 | Hits@10 |
---|---|---|---|---|---|
TransE | 323 | 0.279 | 0.198 | 0.376 | 0.441 |
DistMult | 254 | 0.241 | 0.155 | 0.263 | 0.419 |
ComplEx | 339 | 0.247 | 0.158 | 0.275 | 0.428 |
RotatE | 177 | 0.338 | 0.241 | 0.375 | 0.533 |
TuckER | - | 0.358 | 0.266 | 0.394 | 0.544 |
HAKE | - | 0.346 | 0.250 | 0.381 | 0.542 |
CoKE | - | 0.364 | 0.272 | 0.400 | 0.549 |
---------------------------------------- | ---- | ----- | -------- | -------- | --------- |
Pretrain-KGE_TransE | 162 | 0.332 | - | - | 0.529 |
KG-BERT | 153 | - | - | - | 0.420 |
StAR_BERT-base | 136 | 0.263 | 0.171 | 0.287 | 0.452 |
MEM-KGC_BERT-base_(w/o EP) | - | 0.339 | 0.249 | 0.372 | 0.522 |
MEM-KGC_BERT-base_(w/ EP) | - | 0.346 | 0.253 | 0.381 | 0.531 |
C-LMKE_BERT-base | 141 | 0.306 | 0.218 | 0.331 | 0.484 |
Requirements
Usage
Run main.py to train or test our models.
An example for training for triple classification:
python main.py --batch_size 16 --plm bert --data wn18rr --task TC
An example for training for link prediction:
python main.py --batch_size 16 --plm bert --contrastive --self_adversarial --data wn18rr --task LP
The arguments are as following:
--bert_lr
: learning rate of the language model.--model_lr
: learning rate of other parameters.--batch_size
: batch size used in training.--weight_decay
: weight dacay used in training.--data
: name of the dataset. Choose from 'fb15k-237', 'wn18rr', 'fb13' and 'umls'.--plm
: choice of the language model. Choose from 'bert' and 'bert_tiny'.--load_path
: path of checkpoint to load.--load_epoch
: load the checkpoint of a specific epoch. Use with --load_metric.--load_metric
: use with --load_epoch.--link_prediction
: run link prediction evaluation after loading a checkpoint.--triple_classification
: run triple classification evaluation after loading a checkpoint.--self_adversarial
: use self-adversarial negative sampling for efficient KE learning.--contrastive
: use contrastive LMKE.--task
: specify the task. Choose from 'LP' (link prediction) and 'TC' (triple classification).
Datasets
The datasets are put in the folder 'data', including fb15k-237, WN18RR, FB13 and umls.