Awesome
<p align="center" style="border-radius: 10px"> <img src="asset/logo.png" width="35%" alt="logo"/> </p>β‘οΈSana: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer
<div align="center"> <a href="https://nvlabs.github.io/Sana/"><img src="https://img.shields.io/static/v1?label=Project&message=Github&color=blue&logo=github-pages"></a>   <a href="https://hanlab.mit.edu/projects/sana/"><img src="https://img.shields.io/static/v1?label=Page&message=MIT&color=darkred&logo=github-pages"></a>   <a href="https://arxiv.org/abs/2410.10629"><img src="https://img.shields.io/static/v1?label=Arxiv&message=Sana&color=red&logo=arxiv"></a>   <a href="https://nv-sana.mit.edu/"><img src="https://img.shields.io/static/v1?label=Demo:8x3090&message=MIT&color=yellow"></a>   <a href="https://replicate.com/chenxwh/sana"><img src="https://img.shields.io/static/v1?label=API:H100&message=Replicate&color=pink"></a>   <a href="https://discord.gg/rde6eaE5Ta"><img src="https://img.shields.io/static/v1?label=Discuss&message=Discord&color=purple&logo=discord"></a>   </div> <p align="center" border-raduis="10px"> <img src="asset/Sana.jpg" width="90%" alt="teaser_page1"/> </p>π‘ Introduction
We introduce Sana, a text-to-image framework that can efficiently generate images up to 4096 Γ 4096 resolution. Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU. Core designs include:
(1) DC-AE: unlike traditional AEs, which compress images only 8Γ, we trained an AE that can compress images 32Γ, effectively reducing the number of latent tokens.
(2) Linear DiT: we replace all vanilla attention in DiT with linear attention, which is more efficient at high resolutions without sacrificing quality.
(3) Decoder-only text encoder: we replaced T5 with modern decoder-only small LLM as the text encoder and designed complex human instruction with in-context learning to enhance the image-text alignment.
(4) Efficient training and sampling: we propose Flow-DPM-Solver to reduce sampling steps, with efficient caption labeling and selection to accelerate convergence.
As a result, Sana-0.6B is very competitive with modern giant diffusion model (e.g. Flux-12B), being 20 times smaller and 100+ times faster in measured throughput. Moreover, Sana-0.6B can be deployed on a 16GB laptop GPU, taking less than 1 second to generate a 1024 Γ 1024 resolution image. Sana enables content creation at low cost.
<p align="center" border-raduis="10px"> <img src="asset/model-incremental.jpg" width="90%" alt="teaser_page2"/> </p>π₯π₯ News
- (π₯ New) [2024/12/20] 1.6B 2K resolution Sana models are released: [BF16 pth] or [BF16 diffusers]. π Get your 2K resolution images within 4 seconds! Find more samples in Sana page.
- (π₯ New) [2024/12/18]
diffusers
supports Sana-LoRA fine-tuning! Sana-LoRA's training and convergence speed is supper fast. [Guidance] or [diffusers docs]. - (π₯ New) [2024/12/13]
diffusers
has Sana! All Sana models in diffusers safetensors are released and diffusers pipelineSanaPipeline
,SanaPAGPipeline
,DPMSolverMultistepScheduler(with FlowMatching)
are all supported now. We prepare a Model Card for you to choose. - (π₯ New) [2024/12/10] 1.6B BF16 Sana model is released for stable fine-tuning.
- (π₯ New) [2024/12/9] We release the ComfyUI node for Sana. [Guidance]
- β [2024/11] All multi-linguistic (Emoji & Chinese & English) SFT models are released: 1.6B-512px, 1.6B-1024px, 600M-512px, 600M-1024px. The metric performance is shown here
- β [2024/11] Sana Replicate API is launching at Sana-API.
- β [2024/11] Sana code-base license changed to Apache 2.0.
- β [2024/11] 1.6B Sana models are released.
- β [2024/11] Training & Inference & Metrics code are released.
- β
[2024/11] Working on
diffusers
. - [2024/10] Demo is released.
- [2024/10] DC-AE Code and weights are released!
- [2024/10] Paper is on Arxiv!
Performance
Methods (1024x1024) | Throughput (samples/s) | Latency (s) | Params (B) | Speedup | FID π | CLIP π | GenEval π | DPG π |
---|---|---|---|---|---|---|---|---|
FLUX-dev | 0.04 | 23.0 | 12.0 | 1.0Γ | 10.15 | 27.47 | 0.67 | 84.0 |
Sana-0.6B | 1.7 | 0.9 | 0.6 | 39.5Γ | 5.81 | 28.36 | 0.64 | 83.6 |
Sana-0.6B-MultiLing | 1.7 | 0.9 | 0.6 | 39.5Γ | 5.61 | <u>28.80</u> | <u>0.68</u> | 84.2 |
Sana-1.6B | 1.0 | 1.2 | 1.6 | 23.3Γ | <u>5.76</u> | 28.67 | 0.66 | 84.8 |
Sana-1.6B-MultiLing | 1.0 | 1.2 | 1.6 | 23.3Γ | 5.92 | 28.94 | 0.69 | <u>84.5</u> |
Methods | Throughput (samples/s) | Latency (s) | Params (B) | Speedup | FID π | CLIP π | GenEval π | DPG π |
---|---|---|---|---|---|---|---|---|
512 Γ 512 resolution | ||||||||
PixArt-Ξ± | 1.5 | 1.2 | 0.6 | 1.0Γ | 6.14 | 27.55 | 0.48 | 71.6 |
PixArt-Ξ£ | 1.5 | 1.2 | 0.6 | 1.0Γ | 6.34 | 27.62 | <u>0.52</u> | 79.5 |
Sana-0.6B | 6.7 | 0.8 | 0.6 | 5.0Γ | <u>5.67</u> | <u>27.92</u> | 0.64 | <u>84.3</u> |
Sana-1.6B | 3.8 | 0.6 | 1.6 | 2.5Γ | 5.16 | 28.19 | 0.66 | 85.5 |
1024 Γ 1024 resolution | ||||||||
LUMINA-Next | 0.12 | 9.1 | 2.0 | 2.8Γ | 7.58 | 26.84 | 0.46 | 74.6 |
SDXL | 0.15 | 6.5 | 2.6 | 3.5Γ | 6.63 | 29.03 | 0.55 | 74.7 |
PlayGroundv2.5 | 0.21 | 5.3 | 2.6 | 4.9Γ | 6.09 | 29.13 | 0.56 | 75.5 |
Hunyuan-DiT | 0.05 | 18.2 | 1.5 | 1.2Γ | 6.54 | 28.19 | 0.63 | 78.9 |
PixArt-Ξ£ | 0.4 | 2.7 | 0.6 | 9.3Γ | 6.15 | 28.26 | 0.54 | 80.5 |
DALLE3 | - | - | - | - | - | - | 0.67 | 83.5 |
SD3-medium | 0.28 | 4.4 | 2.0 | 6.5Γ | 11.92 | 27.83 | 0.62 | <u>84.1</u> |
FLUX-dev | 0.04 | 23.0 | 12.0 | 1.0Γ | 10.15 | 27.47 | 0.67 | 84.0 |
FLUX-schnell | 0.5 | 2.1 | 12.0 | 11.6Γ | 7.94 | 28.14 | 0.71 | 84.8 |
Sana-0.6B | 1.7 | 0.9 | 0.6 | 39.5Γ | <u>5.81</u> | 28.36 | 0.64 | 83.6 |
Sana-1.6B | 1.0 | 1.2 | 1.6 | 23.3Γ | 5.76 | <u>28.67</u> | <u>0.66</u> | 84.8 |
Contents
π§ 1. Dependencies and Installation
- Python >= 3.10.0 (Recommend to use Anaconda or Miniconda)
- PyTorch >= 2.0.1+cu12.1
git clone https://github.com/NVlabs/Sana.git
cd Sana
./environment_setup.sh sana
# or you can install each components step by step following environment_setup.sh
π» 2. How to Play with Sana (Inference)
π°Hardware requirement
- 9GB VRAM is required for 0.6B model and 12GB VRAM for 1.6B model. Our later quantization version will require less than 8GB for inference.
- All the tests are done on A100 GPUs. Different GPU version may be different.
π Choose your model: Model card
π Quick start with Gradio
# official online demo
DEMO_PORT=15432 \
python app/app_sana.py \
--share \
--config=configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
--model_path=hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth \
--image_size=1024
1. How to use SanaPipeline
with π§¨diffusers
[!IMPORTANT] Upgrade your
diffusers>=0.32.0.dev
to make theSanaPipeline
andSanaPAGPipeline
available!pip install git+https://github.com/huggingface/diffusers
Make sure to specify
pipe.transformer
to defaulttorch_dtype
andvariant
according to Model Card.Set
pipe.text_encoder
to BF16 andpipe.vae
to FP32 or BF16. For more info, docs are here.
# run `pip install git+https://github.com/huggingface/diffusers` before use Sana in diffusers
import torch
from diffusers import SanaPipeline
pipe = SanaPipeline.from_pretrained(
"Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
variant="bf16",
torch_dtype=torch.bfloat16,
)
pipe.to("cuda")
pipe.vae.to(torch.bfloat16)
pipe.text_encoder.to(torch.bfloat16)
prompt = 'a cyberpunk cat with a neon sign that says "Sana"'
image = pipe(
prompt=prompt,
height=1024,
width=1024,
guidance_scale=4.5,
num_inference_steps=20,
generator=torch.Generator(device="cuda").manual_seed(42),
)[0]
image[0].save("sana.png")
2. How to use SanaPAGPipeline
with π§¨diffusers
# run `pip install git+https://github.com/huggingface/diffusers` before use Sana in diffusers
import torch
from diffusers import SanaPAGPipeline
pipe = SanaPAGPipeline.from_pretrained(
"Efficient-Large-Model/Sana_1600M_1024px_diffusers",
variant="fp16",
torch_dtype=torch.float16,
pag_applied_layers="transformer_blocks.8",
)
pipe.to("cuda")
pipe.text_encoder.to(torch.bfloat16)
pipe.vae.to(torch.bfloat16)
prompt = 'a cyberpunk cat with a neon sign that says "Sana"'
image = pipe(
prompt=prompt,
guidance_scale=5.0,
pag_scale=2.0,
num_inference_steps=20,
generator=torch.Generator(device="cuda").manual_seed(42),
)[0]
image[0].save('sana.png')
<details>
<summary><h3>3. How to use Sana in this repo</h3></summary>
import torch
from app.sana_pipeline import SanaPipeline
from torchvision.utils import save_image
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
generator = torch.Generator(device=device).manual_seed(42)
sana = SanaPipeline("configs/sana_config/1024ms/Sana_1600M_img1024.yaml")
sana.from_pretrained("hf://Efficient-Large-Model/Sana_1600M_1024px_BF16/checkpoints/Sana_1600M_1024px_BF16.pth")
prompt = 'a cyberpunk cat with a neon sign that says "Sana"'
image = sana(
prompt=prompt,
height=1024,
width=1024,
guidance_scale=5.0,
pag_guidance_scale=2.0,
num_inference_steps=18,
generator=generator,
)
save_image(image, 'output/sana.png', nrow=1, normalize=True, value_range=(-1, 1))
</details>
<details>
<summary><h3>4. Run Sana (Inference) with Docker</h3></summary>
# Pull related models
huggingface-cli download google/gemma-2b-it
huggingface-cli download google/shieldgemma-2b
huggingface-cli download mit-han-lab/dc-ae-f32c32-sana-1.0
huggingface-cli download Efficient-Large-Model/Sana_1600M_1024px
# Run with docker
docker build . -t sana
docker run --gpus all --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 \
-v ~/.cache:/root/.cache \
sana
</details>
π Run inference with TXT or JSON files
# Run samples in a txt file
python scripts/inference.py \
--config=configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
--model_path=hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth \
--txt_file=asset/samples_mini.txt
# Run samples in a json file
python scripts/inference.py \
--config=configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
--model_path=hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth \
--json_file=asset/samples_mini.json
where each line of asset/samples_mini.txt
contains a prompt to generate
π₯ 3. How to Train Sana
π°Hardware requirement
- 32GB VRAM is required for both 0.6B and 1.6B model's training
We provide a training example here and you can also select your desired config file from config files dir based on your data structure.
To launch Sana training, you will first need to prepare data in the following formats. Here is an example for the data structure for reference.
asset/example_data
βββ AAA.txt
βββ AAA.png
βββ BCC.txt
βββ BCC.png
βββ ......
βββ CCC.txt
βββ CCC.png
Then Sana's training can be launched via
# Example of training Sana 0.6B with 512x512 resolution from scratch
bash train_scripts/train.sh \
configs/sana_config/512ms/Sana_600M_img512.yaml \
--data.data_dir="[asset/example_data]" \
--data.type=SanaImgDataset \
--model.multi_scale=false \
--train.train_batch_size=32
# Example of fine-tuning Sana 1.6B with 1024x1024 resolution
bash train_scripts/train.sh \
configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
--data.data_dir="[asset/example_data]" \
--data.type=SanaImgDataset \
--model.load_from=hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth \
--model.multi_scale=false \
--train.train_batch_size=8
π» 4. Metric toolkit
Refer to Toolkit Manual.
πͺTo-Do List
We will try our best to release
- [β ] Training code
- [β ] Inference code
- [β ] Model zoo
- [β ] ComfyUI
- [β ] DC-AE Diffusers
- [β ] Sana merged in Diffusers(https://github.com/huggingface/diffusers/pull/9982)
- [β
] LoRA training by @paul(
diffusers
: https://github.com/huggingface/diffusers/pull/10234) - [β ] 2K resolution models
- [π»] ControlNet (train & inference & models)
- [π»] 8bit / 4bit Laptop development
- [π»] Larger model size
- [π»] Better re-construction F32/F64 VAEs.
- [π»] Sana1.5 (Focus on: Human body / Human face / Text rendering / Realism / Efficiency)
π€Acknowledgements
- Thanks to PixArt-Ξ±, PixArt-Ξ£, Efficient-ViT, ComfyUI_ExtraModels and diffusers for their wonderful work and codebase!
πBibTeX
@misc{xie2024sana,
title={Sana: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer},
author={Enze Xie and Junsong Chen and Junyu Chen and Han Cai and Haotian Tang and Yujun Lin and Zhekai Zhang and Muyang Li and Ligeng Zhu and Yao Lu and Song Han},
year={2024},
eprint={2410.10629},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2410.10629},
}