Home

Awesome

SENSE: a Shared Encoder for Scene Flow Estimation

PyTorch implementation of our ICCV 2019 Oral paper SENSE: A Shared Encoder for Scene-flow Estimation.

<p align="center"> <img src="sense.png" width="500" /> </p>

License

Copyright (C) 2019 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).

Requirements

It is strongly recommended to use a conda environment to install all the dependencies. Simply run sh scripts/install.sh to install all dependencies and also compile the correlation package.

All experiments were conducted on 8 2080ti GPUs (each with 11GB memory) or 2 M40 GPUs (each with 24GB memory).

In our original implementation, we used a C++ implementation for the cost volume computation for both optical flow and stereo disparity estimations. But the C++ implementatyion strictly requires a PyTorch version of 0.4.0. In this relased version, we switched to use the implemtnation provided at https://github.com/NVIDIA/flownet2-pytorch. We use this implementation for stereo disparity estimation, although it only supports cost volume computation for optical flow (searching for correspondence in a local 2D range). Please consult our paper if you are interested in the running time and GPU memory usuage.

Quick Start

First run sh scripts/download_pretrained_models.sh to download pre-trained models. Run python tools/demo.py then for a quick demo.

Run sh scripits/make_kitti2015_submission.sh to generate results that can be submitted to the online KITTI scene flow estimation benchmark. You should be able to get the following results.

ErrorD1-bgD1-fgD1-allD2-bgD2-fgD2-allFl-bgFl-fgFl-allSF-bgSF-fgSF-all
All/Est2.073.012.224.9010.835.897.309.337.648.3615.499.55

Training

See TRAINING.md for details.

Citation

If you find SENSE useful for your research, please consider citing it.

@InProceedings{jiang2019sense,
author = {Jiang, Huaizu and Sun, Deqing and Jampani, Varun and Lv, Zhaoyang and Learned-Miller, Erik and Kautz, Jan},
title = {SENSE: A Shared Encoder Network for Scene-Flow Estimation},
booktitle = {ICCV},
year = {2019}
}