Awesome
Conditional Adversarial Latent Models
Code accompanying the paper:
"CALM: Conditional Adversarial Latent Models for Directable Virtual Characters"
CALM builds upon, and borrows code from, Adversarial Skill Embeddings (Peng et. al., 2022, ASE).
Installation
Download Isaac Gym from the website, then follow the installation instructions.
Once Isaac Gym is installed, install the external dependencies for this repo:
pip install -r requirements.txt
CALM
Pre-Training
First, a CALM model can be trained to imitate a dataset of motions clips using the following command:
python calm/run.py --task HumanoidAMPGetup --cfg_env calm/data/cfg/humanoid_calm_sword_shield_getup.yaml --cfg_train calm/data/cfg/train/rlg/calm_humanoid.yaml --motion_file calm/data/motions/reallusion_sword_shield/dataset_reallusion_sword_shield.yaml --headless --track
--motion_file
can be used to specify a dataset of motion clips that the model should imitate.
The task HumanoidAMPGetup
will train a model to imitate a dataset of motion clips and get up after falling.
Over the course of training, the latest checkpoint Humanoid.pth
will be regularly saved to output/
,
along with a Tensorboard log. --headless
is used to disable visualizations and --track
is used for tracking using weights and biases. If you want to view the
simulation, simply remove this flag. To test a trained model, use the following command:
python calm/run.py --test --task HumanoidAMPGetup --num_envs 16 --cfg_env calm/data/cfg/humanoid_calm_sword_shield_getup.yaml --cfg_train calm/data/cfg/train/rlg/calm_humanoid.yaml --motion_file calm/data/motions/reallusion_sword_shield/dataset_reallusion_sword_shield.yaml --checkpoint [path_to_calm_checkpoint]
You can also test the robustness of the model with --task HumanoidPerturb
, which will throw projectiles at the character.
Precision-Training
After the CALM low-level controller has been trained, it can be used to train style-constrained-locomotion controllers. The following command will use a pre-trained CALM model to perform a target heading task:
python calm/run.py --task HumanoidHeadingConditioned --cfg_env calm/data/cfg/humanoid_sword_shield_heading_conditioned.yaml --cfg_train calm/data/cfg/train/rlg/hrl_humanoid_style_control.yaml --motion_file calm/data/motions/reallusion_sword_shield/dataset_reallusion_sword_shield_fsm_movements.yaml --llc_checkpoint [path_to_llc_checkpoint] --headless --track
--llc_checkpoint
specifies the checkpoint to use for the low-level controller. A pre-trained CALM low-level
controller is available in calm/data/models/calm_llc_reallusion_sword_shield.pth
.
To test a trained model, use the following command:
python calm/run.py --test --task HumanoidHeadingConditioned --num_envs 16 --cfg_env calm/data/cfg/humanoid_sword_shield_heading_conditioned.yaml --cfg_train calm/data/cfg/train/rlg/hrl_humanoid.yaml --motion_file calm/data/motions/reallusion_sword_shield/dataset_reallusion_sword_shield_fsm_movements.yaml --llc_checkpoint [path_to_llc_checkpoint] --checkpoint [path_to_hlc_checkpoint]
Task-Solving (Inference -- no training!)
The CALM low-level controller and the high-level locomotion controller can be combined to solve tasks without further trianing. This phase is inference only.
python calm/run.py --test --task HumanoidStrikeFSM --num_envs 16 --cfg_env calm/data/cfg/humanoid_sword_shield_strike_fsm.yaml --cfg_train calm/data/cfg/train/rlg/hrl_humanoid_fsm.yaml --motion_file calm/data/motions/reallusion_sword_shield/dataset_reallusion_sword_shield_fsm_movements.yaml --llc_checkpoint [path_to_llc_checkpoint] --checkpoint [path_to_hlc_checkpoint]
--llc_checkpoint
specifies the checkpoint to use for the low-level controller. A pre-trained CALM low-level
controller is available in calm/data/models/calm_llc_reallusion_sword_shield.pth
.
--checkpoint
specified the checkpoint to use for the precision-trained high-level controller. A pre-trained high-level
precision-trained controller is available in calm/data/models/calm_hlc_precision_trained_reallusion_sword_shield.pth
.
The built-in tasks and their respective config files are:
HumanoidStrikeFSM: calm/data/cfg/humanoid_sword_shield_strike_fsm.yaml
HumanoidLocationFSM: calm/data/cfg/humanoid_sword_shield_location_fsm.yaml
Task-Training
In addition to precision training, a high-level controller can also be trained to directly solve tasks. The following command will use a pre-trained CALM model to perform a target heading task:
python calm/run.py --task HumanoidHeading --cfg_env calm/data/cfg/humanoid_sword_shield_heading.yaml --cfg_train calm/data/cfg/train/rlg/hrl_humanoid.yaml --motion_file calm/data/motions/reallusion_sword_shield/RL_Avatar_Idle_Ready_Motion.npy --llc_checkpoint [path_to_llc_checkpoint] --headless --track
--llc_checkpoint
specifies the checkpoint to use for the low-level controller. A pre-trained CALM low-level
controller is available in calm/data/models/calm_llc_reallusion_sword_shield.ckpt
.
--task
specifies the task that the character should perform, and --cfg_env
specifies the environment
configurations for that task. The built-in tasks and their respective config files are:
HumanoidReach: calm/data/cfg/humanoid_sword_shield_reach.yaml
HumanoidHeading: calm/data/cfg/humanoid_sword_shield_heading.yaml
HumanoidLocation: calm/data/cfg/humanoid_sword_shield_location.yaml
HumanoidStrike: calm/data/cfg/humanoid_sword_shield_strike.yaml
To test a trained model, use the following command:
python calm/run.py --test --task HumanoidHeading --num_envs 16 --cfg_env calm/data/cfg/humanoid_sword_shield_heading.yaml --cfg_train calm/data/cfg/train/rlg/hrl_humanoid.yaml --motion_file calm/data/motions/reallusion_sword_shield/RL_Avatar_Idle_Ready_Motion.npy --llc_checkpoint [path_to_llc_checkpoint] --checkpoint [path_to_hlc_checkpoint]
AMP
We also provide an implementation of Adversarial Motion Priors (https://xbpeng.github.io/projects/AMP/index.html). A model can be trained to imitate a given reference motion using the following command:
python calm/run.py --task HumanoidAMP --cfg_env calm/data/cfg/humanoid_sword_shield.yaml --cfg_train calm/data/cfg/train/rlg/amp_humanoid.yaml --motion_file calm/data/motions/reallusion_sword_shield/sword_shield/RL_Avatar_Atk_2xCombo01_Motion.npy --headless --track
The trained model can then be tested with:
python calm/run.py --test --task HumanoidAMP --num_envs 16 --cfg_env calm/data/cfg/humanoid_sword_shield.yaml --cfg_train calm/data/cfg/train/rlg/amp_humanoid.yaml --motion_file calm/data/motions/reallusion_sword_shield/sword_shield/RL_Avatar_Atk_2xCombo01_Motion.npy --checkpoint [path_to_amp_checkpoint]
Motion Data
Motion clips are located in calm/data/motions/
. Individual motion clips are stored as .npy
files. Motion datasets are specified by .yaml
files, which contains a list of motion clips to be included in the dataset. Motion clips can be visualized with the following command:
python calm/run.py --test --task HumanoidViewMotion --num_envs 2 --cfg_env calm/data/cfg/humanoid_sword_shield.yaml --cfg_train calm/data/cfg/train/rlg/amp_humanoid.yaml --motion_file calm/data/motions/reallusion_sword_shield/sword_shield/RL_Avatar_Atk_2xCombo01_Motion.npy
--motion_file
can be used to visualize a single motion clip .npy
or a motion dataset .yaml
.
If you want to retarget new motion clips to the character, you can take a look at an example retargeting script in calm/poselib/retarget_motion.py
.