Awesome
mamba-mini
An efficient implementation of selective scan in one file, works with both cpu and gpu, with corresponding mathematical derivation. It is probably the code which is the most close to selective_scan_cuda in mamba.
update!
20240304: New implementation with new derivations!
we now support a new approach to implement selective_scan chunk-parallely:selective_scan_easyv3
. It is faster thanselective_scan_easy
whend_state=1
, but still slower thanmamba_ssm
with cuda. We would implement it intriton
and test the speed in the future.
mathematical derivation to chunk-naive version
code is in selective_scan_easy
and SelectiveScanEasy
.
mathematical derivation to chunk-parallel version
This is the chunk parallel version of selective scan, with support to some different branches.
code is in selective_scan_easyv3
.
naive code
import torch
def selective_scan_easy(us, dts, As, Bs, Cs, Ds, delta_bias=None, delta_softplus=False, return_last_state=False, chunksize=64):
"""
# B: batch_size, G: groups, D: dim, N: state dim, L: seqlen
us: B, G * D, L
dts: B, G * D, L
As: G * D, N
Bs: B, G, N, L
Cs: B, G, N, L
Ds: G * D
delta_bias: G * D
# chunksize can be any as you like. But as the chunksize raises, hs may get None, as exp(sum(delta) A) is really small
"""
def selective_scan_chunk(us, dts, As, Bs, Cs, hprefix):
"""
partial(h) / partial(t) = Ah + Bu; y = Ch + Du;
=> partial(h*exp(-At)) / partial(t) = Bu*exp(-At);
=> h_t = h_0 + sum_{0}_{t}_{Bu*exp(A(t-v)) dv};
=> h_b = exp(A(dt_a + ... + dt_{b-1})) * (h_a + sum_{a}_{b-1}_{Bu*exp(-A(dt_a + ... + dt_i)) dt_i});
y_i = C_i*h_i + D*u_i
"""
"""
us, dts: (L, B, G, D) # L is chunk_size
As: (G, D, N)
Bs, Cs: (L, B, G, N)
Ds: (G, D)
hprefix: (B, G, D, N)
"""
ts = dts.cumsum(dim=0)
Ats = torch.einsum("gdn,lbgd->lbgdn", As, ts).exp()
scale = Ats[-1].detach()
rAts = Ats / scale
duts = dts * us
dtBus = torch.einsum("lbgd,lbgn->lbgdn", duts, Bs)
hs_tmp = rAts * (dtBus / rAts).cumsum(dim=0)
hs = hs_tmp + Ats * hprefix.unsqueeze(0)
ys = torch.einsum("lbgn,lbgdn->lbgd", Cs, hs)
return ys, hs
inp_dtype = us.dtype
has_D = Ds is not None
dts = dts.float()
if delta_bias is not None:
dts = dts + delta_bias.view(1, -1, 1).float()
if delta_softplus:
dts = torch.nn.functional.softplus(dts)
if len(Bs.shape) == 3:
Bs = Bs.unsqueeze(1)
if len(Cs.shape) == 3:
Cs = Cs.unsqueeze(1)
B, G, N, L = Bs.shape
us = us.view(B, G, -1, L).permute(3, 0, 1, 2).float()
dts = dts.view(B, G, -1, L).permute(3, 0, 1, 2).float()
As = As.view(G, -1, N).float()
Bs = Bs.permute(3, 0, 1, 2).float()
Cs = Cs.permute(3, 0, 1, 2).float()
Ds = Ds.view(G, -1).float() if has_D else None
D = As.shape[1]
oys = []
# ohs = []
hprefix = us.new_zeros((B, G, D, N), dtype=torch.float)
for i in range(0, L - 1, chunksize):
ys, hs = selective_scan_chunk(
us[i:i + chunksize], dts[i:i + chunksize],
As, Bs[i:i + chunksize], Cs[i:i + chunksize], hprefix,
)
oys.append(ys)
# ohs.append(hs)
hprefix = hs[-1]
oys = torch.cat(oys, dim=0)
# ohs = torch.cat(ohs, dim=0)
if has_D:
oys = oys + Ds * us
oys = oys.permute(1, 2, 3, 0).view(B, -1, L)
oys = oys.to(inp_dtype)
# hprefix = hprefix.to(inp_dtype)
return oys if not return_last_state else (oys, hprefix.view(B, G * D, N))
to test
pytest test_selective_scan.py