Awesome
Pixel Adaptive Deep Unfolding Transformer for Hyperspectral Image Reconstruction
<div align="center"> <a target='_blank'> Miaoyu Li <sup>1</sup> </a>  <a href='https://ying-fu.github.io/' target='_blank'>Ying Fu<sup>1</a>  <a target='_blank'> Ji Liu <sup>2</sup> </a>  <a href='http://yulunzhang.com/' target='_blank'>Yulun Zhang <sup>3</sup></a>  <br> <div > <sup>1</sup> Beijing Institute of Technology   <sup>2</sup> Baidu Inc.   <sup>3</sup> ETH Zurich   </div> <br> <i><strong><a target='_blank'>ICCV 2023</a></strong></i> <br> <br> </div>1. Comparison with State-of-the-art Methods
Method | Params (M) | FLOPS (G) | PSNR | SSIM | Model Zoo | Result |
---|---|---|---|---|---|---|
DAUHST-L | 6.15 | 79.50 | 38.36 | 0.967 | Repo | Repo |
PADUT-3stg | 1.35 | 22.91 | 36.95 | 0.962 | Google Driver | Google Driver |
PADUT-5stg | 2.24 | 37.90 | 37.84 | 0.967 | Google Driver | Google Driver |
PADUT-7stg | 3.14 | 52.90 | 38.41 | 0.971 | Google Driver | Google Driver |
PADUT-12stg | 5.38 | 90.46 | 38.89 | 0.972 | Google Driver | Google Driver |
2. Create Environment
pip install -r requirements.txt
3. Data Preparation
Download cave_1024_28 (Baidu Disk, code: fo0q
| One Drive), CAVE_512_28 (Baidu Disk, code: ixoe
| One Drive), KAIST_CVPR2021 (Baidu Disk, code: 5mmn
| One Drive), TSA_simu_data (Baidu Disk, code: efu8
| One Drive), TSA_real_data (Baidu Disk, code: eaqe
| One Drive), and then put them into the corresponding folders of datasets/
and recollect them as the following form:
|--real
|-- test_code
|-- train_code
|--simulation
|-- test_code
|-- train_code
|--datasets
|--cave_1024_28
|--scene1.mat
|--scene2.mat
:
|--scene205.mat
|--CAVE_512_28
|--scene1.mat
|--scene2.mat
:
|--scene30.mat
|--KAIST_CVPR2021
|--1.mat
|--2.mat
:
|--30.mat
|--TSA_simu_data
|--mask.mat
|--Truth
|--scene01.mat
|--scene02.mat
:
|--scene10.mat
|--TSA_real_data
|--mask.mat
|--Measurements
|--scene1.mat
|--scene2.mat
:
|--scene5.mat
Following TSA-Net and DGSMP, we use the CAVE dataset (cave_1024_28) as the simulation training set. Both the CAVE (CAVE_512_28) and KAIST (KAIST_CVPR2021) datasets are used as the real training set.
4. Simulation Experiement
4.1 Training
cd simulation
python train.py --template dauhst --outf ./exp/padut_3stg/ --method padut_3
python train.py --template dauhst --outf ./exp/padut_5stg/ --method padut_5
python train.py --template dauhst --outf ./exp/padut_7stg/ --method padut_7
python train.py --template dauhst --outf ./exp/padut_12stg/ --method padut_12
4.2 Testing
python test.py --template dauhst --outf ./exp/padut_3stg/ --method padut_3 --pretrained_model_path ./checkpoints/3.pth
python test.py --template dauhst --outf ./exp/padut_5stg/ --method padut_5 --pretrained_model_path ./checkpoints/5.pth
python test.py --template dauhst --outf ./exp/padut_7stg/ --method padut_7 --pretrained_model_path ./checkpoints/7.pth
python test.py --template dauhst --outf ./exp/padut_12stg/ --method padut_12 --pretrained_model_path ./checkpoints/12.pth
5. Real Experiement
5.1 Training
python train.py --template dauhst --outf ./exp/padut_3stg/ --method padut_3
5.2 Testing
python test.py --template dauhst --outf ./exp/padut_3stg/ --method padut_3 --pretrained_model_path ./checkpoints/3.pth
6. Acknowledgements
This code repository's implementation is based on these two works:
@inproceedings{mst,
title={Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image Reconstruction},
author={Yuanhao Cai and Jing Lin and Xiaowan Hu and Haoqian Wang and Xin Yuan and Yulun Zhang and Radu Timofte and Luc Van Gool},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2022}
}
@inproceedings{res,
title={Residual Degradation Learning Unfolding Framework with Mixing Priors across Spectral and Spatial for Compressive Spectral Imaging},
author={Yubo Dong and Dahua Gao and Tian Qiu and Yuyan Li and Minxi Yang and Guangming Shi},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2023}
}
Citation
@inproceedings{PADUT,
title={Pixel Adaptive Deep Unfolding Transformer for Hyperspectral Image Reconstruction},
author={Miaoyu Li and Ying fu and Ji Liu and Yulun Zhang},
booktitle={Proceedings of the IEEE International Conference on Computer Vision(ICCV)},
year={2023}
}