Home

Awesome

RWR-GAE

Code for the paper "Random Walk Regularized Graph Auto Encoder"

The base code is a PyTorch implementation of the Variational Graph Auto-Encoder model described in the paper: T. N. Kipf, M. Welling, Variational Graph Auto-Encoders, NIPS Workshop on Bayesian Deep Learning (2016)

The code in this repo is based on or refers to https://github.com/tkipf/gae, https://github.com/tkipf/pygcn and https://github.com/vmasrani/gae_in_pytorch.

Requirements

To train a model run the following command

cd gae
python train.py --model="gcn_ae" --dataset-str="cora" --dw=1 --epochs=200 --walk-length=5 --window-size=3 --number-walks=5 --lr_dw=0.01

Results on CORA test set

Link Prediction results:

ModelROCAP
GAE0.910.92
VGAE0.9140.926
GAE (our impl)0.914300.92585
VGAE (our impl)0.9217150.927751
ARGE0.9240.932
ARVGE0.9240.926
DW-GAE0.9240.918
DW-VGAE0.9260.918

Clustering results:

ModelAccNMIF1PrecisionARI
GAE0.5960.4290.5950.5960.347
VGAE0.6090.4360.6090.6090.346
GAE (our impl)0.5260.420.5080.5300.308
VGAE (our impl)0.5900.4450.5630.5780.351
ARGE0.6400.4490.6190.6460.352
ARVGE0.6380.4500.6270.6240.374
DW-GAE0.6690.4640.6180.6290.417
DW-VGAE0.6850.4550.6680.6850.417

Results on Citeseer test set

Link Prediction results:

ModelROCAP
GAE0.8950.899
VGAE0.9080.92
ARGE0.9320.919
ARVGE0.9240.93
DW-GAE0.9210.915
DW-VGAE0.9130.908

Clustering results:

ModelAccNMIF1PrecisionARI
GAE0.4080.1760.3720.4180.124
VGAE0.3440.1560.3080.3490.093
ARGE0.5730.3500.5460.5730.341
ARVGE0.5440.2610.5290.5490.245
DW-GAE0.6160.3440.5850.6050.343
DW-VGAE0.6130.3380.5820.5950.336

Results on Pubmed test set

Link Prediction results:

ModelROCAP
GAE0.9640.965
VGAE0.9440.947
ARGE0.9680.971
ARVGE0.9650.968
DW-GAE0.9470.947
DW-VGAE0.9530.952

Clustering results:

ModelAccNMIF1PrecisionARI
GAE0.6970.330.690.720.322
VGAE0.6080.2190.6120.6130.195
DW-GAE0.7260.3550.7140.7290.37
DW-VGAE0.7360.3460.7250.7360.381

Runs in 2-3 mins for cora dataset on cpu. The code currently doesn't support GPU.