Awesome
RWR-GAE
Code for the paper "Random Walk Regularized Graph Auto Encoder"
The base code is a PyTorch implementation of the Variational Graph Auto-Encoder model described in the paper: T. N. Kipf, M. Welling, Variational Graph Auto-Encoders, NIPS Workshop on Bayesian Deep Learning (2016)
The code in this repo is based on or refers to https://github.com/tkipf/gae, https://github.com/tkipf/pygcn and https://github.com/vmasrani/gae_in_pytorch.
Requirements
- Python 3
- PyTorch 0.4
To train a model run the following command
cd gae
python train.py --model="gcn_ae" --dataset-str="cora" --dw=1 --epochs=200 --walk-length=5 --window-size=3 --number-walks=5 --lr_dw=0.01
- Supported models are "gcn_vae" and "gcn_ae"
- Supported datasets are "cora" and "citeseer"
- dw, whether to use regularization or not (0: no regularization, 1: yes)
- if dw = 0, then all the remaining params are useless
- refer to gae/train.py for other program arguments
Results on CORA test set
Link Prediction results:
Model | ROC | AP |
---|---|---|
GAE | 0.91 | 0.92 |
VGAE | 0.914 | 0.926 |
GAE (our impl) | 0.91430 | 0.92585 |
VGAE (our impl) | 0.921715 | 0.927751 |
ARGE | 0.924 | 0.932 |
ARVGE | 0.924 | 0.926 |
DW-GAE | 0.924 | 0.918 |
DW-VGAE | 0.926 | 0.918 |
Clustering results:
Model | Acc | NMI | F1 | Precision | ARI |
---|---|---|---|---|---|
GAE | 0.596 | 0.429 | 0.595 | 0.596 | 0.347 |
VGAE | 0.609 | 0.436 | 0.609 | 0.609 | 0.346 |
GAE (our impl) | 0.526 | 0.42 | 0.508 | 0.530 | 0.308 |
VGAE (our impl) | 0.590 | 0.445 | 0.563 | 0.578 | 0.351 |
ARGE | 0.640 | 0.449 | 0.619 | 0.646 | 0.352 |
ARVGE | 0.638 | 0.450 | 0.627 | 0.624 | 0.374 |
DW-GAE | 0.669 | 0.464 | 0.618 | 0.629 | 0.417 |
DW-VGAE | 0.685 | 0.455 | 0.668 | 0.685 | 0.417 |
Results on Citeseer test set
Link Prediction results:
Model | ROC | AP |
---|---|---|
GAE | 0.895 | 0.899 |
VGAE | 0.908 | 0.92 |
ARGE | 0.932 | 0.919 |
ARVGE | 0.924 | 0.93 |
DW-GAE | 0.921 | 0.915 |
DW-VGAE | 0.913 | 0.908 |
Clustering results:
Model | Acc | NMI | F1 | Precision | ARI |
---|---|---|---|---|---|
GAE | 0.408 | 0.176 | 0.372 | 0.418 | 0.124 |
VGAE | 0.344 | 0.156 | 0.308 | 0.349 | 0.093 |
ARGE | 0.573 | 0.350 | 0.546 | 0.573 | 0.341 |
ARVGE | 0.544 | 0.261 | 0.529 | 0.549 | 0.245 |
DW-GAE | 0.616 | 0.344 | 0.585 | 0.605 | 0.343 |
DW-VGAE | 0.613 | 0.338 | 0.582 | 0.595 | 0.336 |
Results on Pubmed test set
Link Prediction results:
Model | ROC | AP |
---|---|---|
GAE | 0.964 | 0.965 |
VGAE | 0.944 | 0.947 |
ARGE | 0.968 | 0.971 |
ARVGE | 0.965 | 0.968 |
DW-GAE | 0.947 | 0.947 |
DW-VGAE | 0.953 | 0.952 |
Clustering results:
Model | Acc | NMI | F1 | Precision | ARI |
---|---|---|---|---|---|
GAE | 0.697 | 0.33 | 0.69 | 0.72 | 0.322 |
VGAE | 0.608 | 0.219 | 0.612 | 0.613 | 0.195 |
DW-GAE | 0.726 | 0.355 | 0.714 | 0.729 | 0.37 |
DW-VGAE | 0.736 | 0.346 | 0.725 | 0.736 | 0.381 |
Runs in 2-3 mins for cora dataset on cpu. The code currently doesn't support GPU.