Home

Awesome

Learning Texture Invariant Representation for Domain Adaptation of Semantic Segmentation

A pytorch implementation of LTIR.

<img width="534" alt="image" src="https://user-images.githubusercontent.com/39029444/78094147-c9123800-740e-11ea-83b0-3ee28c2d305b.png">

Requirements

Preparing dataset

We used code from Style-swap and CycleGAN.

Training

Initial weight

python train_gta2cityscapes.py --translated-data-dir /Path/to/translated/source --stylized-data-dir /Path/to/stylized/source

Evalutation

python evaluate_cityscapes.py --restore-from /Path/to/weight
python compute_iou.py /Path/to/Cityscapes/gtFine/val /Path/to/results

Weight of Final Model

GTA5 to Cityscapes
SYNTHIA to Cityscapes

Acknowledgement

This code is based on AdaptSegNet and BDL.