Awesome
Geometry Sharing Network for 3D Point Cloud Classification and Segmentation. AAAI 2020
Mingye Xu, Zhipeng Zhou, Yu Qiao.
Overview
<img src = './imgs/network.png' width = 800>Futher information please contact Mingye Xu (my.xu@siat.ac.cn)
Citation
Please cite this paper if you want to use it in your work,
@misc{xu2019geometry,
title={Geometry Sharing Network for 3D Point Cloud Classification and Segmentation},
author={Mingye Xu and Zhipeng Zhou and Yu Qiao},
year={2019},
eprint={1912.10644},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Installation
Requirements
- Linux (tested on Ubuntu 14.04/16.04)
- Python 3.5+
- PyTorch 1.0
Install
Install this library by running the following command:
cd OP
python setup.py install
cd ../
Usage
Point Cloud Classification
- Run the training script:
python main.py
- Run the evaluation script :
python main.py --eval True --model_path 'pretrained/model_1024_92.9.t7'
Other information
We will release part segmentation code later. Due to the differences of models, please contact us by email if you need the classification model(2048 input points) with 93.3% accuracy.
Acknowledgement
This code is based on DGCNN and Pointnet2.Pytorch.