Awesome
MonteBoxFinder
Official implementation for the ECCV 2022 work
MonteBoxFinder: Detecting and Filtering Primitives to Fit a Noisy Point Cloud
by Michaël Ramamonjisoa, Sinisa Stekovic and Vincent Lepetit
[Paper] [Project Page]
Downloading ScanNet
Download the ScanNet dataset following their instructions.
You only need the _vh_2_clean.ply
files
python download-scannet.py -o PATH_TO_SCANNET_SCENES --type _vh_clean_2.ply
The chosen output path PATH_TO_SCANNET_SCENES
should contain scans
, and scans_test
directories.
Check that you have all scenes with
find PATH_TO_SCANNET_SCENES | grep _vh_clean_2.ply | wc -l
which should return 1613.
Running the box proposals extraction code
Install
See CuboidDetection (WIP) to install the C++ library.
Run
Run the cuboid detection script run_cuboid_detector.py using
cd python
python run_cuboid_detector.py --scans_dir PATH_TO_SCANNET_SCENES --out_dir ../Data/PrimitiveDetection --lib_dir ../CuboidDetection/build
Running the optimization code
cd python
python run.py --scans_dir ../Data/PrimitiveDetection --outdir ../results/benchmark --num_workers 1 --scene_list_file ../scenes_todo_all.txt --benchmark
Citation
If you find MonteBoxFinder useful in your research, please consider citing:
@article{ramamonjisoa2022mbf,
Title = {MonteBoxFinder: Detecting and Filtering Primitives to Fit a Noisy Point Cloud},
Author = {Micha\"el Ramamonjisoa, Sinisa Stekovic and Vincent Lepetit},
Journal = {European Conference on Computer Vision (ECCV)},
Year = {2022}
}