Awesome
BorderDet
This project provides an implementation for "BorderDet: Border Feature for Dense Object Detection" (ECCV2020 Oral) on PyTorch.
For the reason that experiments in the paper were conducted using internal framework, this project reimplements them on cvpods and reports detailed comparisons below.
<center><img src="./playground/detection/coco/borderdet/intro/borderdet.png" width="700" align="middle"/></center>Requirements
Get Started
- install cvpods locally (requires cuda to compile)
python3 -m pip install 'git+https://github.com/Megvii-BaseDetection/cvpods.git'
# (add --user if you don't have permission)
# Or, to install it from a local clone:
git clone https://github.com/Megvii-BaseDetection/cvpods.git
python3 -m pip install -e cvpods
# Or,
pip install -r requirements.txt
python3 setup.py build develop
- prepare datasets
cd /path/to/cvpods
cd datasets
ln -s /path/to/your/coco/dataset coco
- Train & Test
git clone https://github.com/Megvii-BaseDetection/BorderDet.git
cd BorderDet/playground/detection/coco/borderdet/borderdet.res50.fpn.coco.800size.1x # for example
Train
pods_train --num-gpus 8
Test
pods_test --num-gpus 8 \
MODEL.WEIGHTS /path/to/your/save_dir/ckpt.pth # optional
OUTPUT_DIR /path/to/your/save_dir # optional
Multi node training
sudo apt install net-tools ifconfig
pods_train --num-gpus 8 --num-machines N --machine-rank 0/1/.../N-1 --dist-url "tcp://MASTER_IP:port"
Results on COCO
For your convenience, we provide the performance of the following trained models. All models are trained with 16 images in a mini-batch and frozen batch normalization. All model including X_101/DCN_X_101 will be released soon.
Model | Multi-scale training | Multi-scale testing | Testing time / im | AP (minival) | Link |
---|---|---|---|---|---|
FCOS_R_50_FPN_1x | No | No | 54ms | 38.7 | download |
BD_R_50_FPN_1x | No | No | 60ms | 41.4 | download |
BD_R_101_FPN_1x | Yes | No | 76ms | 45.0 | download |
BD_X_101_32x8d_FPN_1x | Yes | No | 124ms | 45.6 | download |
BD_X_101_64x4d_FPN_1x | Yes | No | 123ms | 46.2 | download |
BD_DCNV2_X_101_32x8d_FPN_1x | Yes | No | 150ms | 47.9 | download |
BD_DCNV2_X_101_64x4d_FPN_1x | Yes | No | 156ms | 47.5 | download |
Acknowledgement
cvpods is developed based on Detectron2. For more details about official detectron2, please check DETECTRON2.
Contributing to the project
Any pull requests or issues are welcome.