Home

Awesome

ProMISe

Paper

ProMISe: Prompt-driven 3D Medical Image Segmentation Using Pretrained Image Foundation Models


Recent news

(11/13/23) The pretrained ProMISe models and datasets are uploaded.

(11/12/23) The code is uploaded and updated.


Datasets

Here are the datasets that we used in our experiments, which are modified based on the original datasets from Medical Segmentation Decathlon. We used two public datasets, e.g. task 07 and 10 for pancreas and colon tumor segmentations, respectively.

Installation

conda create -n promise python=3.9
conda activate promise
(Optional): sudo install git
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113 # install pytorch
pip install git+https://github.com/facebookresearch/segment-anything.git # install segment anything packages
pip install git+https://github.com/deepmind/surface-distance.git # for normalized surface dice (NSD) evaluation
pip install -r requirements.txt

Training

python train.py --data colon --data_dir your_data_directory --save_dir to_save_model_and_log

Test

python test.py --data colon --data_dir your_data_directory --save_dir to_save_model_and_log --split test

use pretrained ProMISe. --use_pretrain --pretrain_path /your_downladed_path/colon_pretrain_promise.pth

Tips

TODO:

  1. build this page for better instruction.
  2. Pytorch DistributedDataParallel. The DDP implementation can be viewed in our latest work

Please shoot an email to hao.li.1@vanderbilt.edu for any questions, and I am always happy to help! :)

@article{li2023promise,
  title={Promise: Prompt-driven 3D Medical Image Segmentation Using Pretrained Image Foundation Models},
  author={Li, Hao and Liu, Han and Hu, Dewei and Wang, Jiacheng and Oguz, Ipek},
  journal={arXiv preprint arXiv:2310.19721},
  year={2023}
}
@article{li2023assessing,
  title={Assessing Test-time Variability for Interactive 3D Medical Image Segmentation with Diverse Point Prompts},
  author={Li, Hao and Liu, Han and Hu, Dewei and Wang, Jiacheng and Oguz, Ipek},
  journal={arXiv preprint arXiv:2311.07806},
  year={2023}
}