Awesome
Multiparty-Dialog-RC
This repository contains the code for the paper "Challenge Reading Comprehension on Daily Conversations: Passage Completion on Multiparty Dialog". See full paper here
Requirements
- Python 2.7
- Numpy >= 1.13.3
- Tensorflow >= 1.4.0
- Keras >= 2.0.9
Datasets
Our datasets with experimental splits can be found at dialog_rc_data in json format.
The original TV show transcripts in json format can be found at Character Mining project.
Word embeddings: We used Glove vectors with 100 dimentions.
Usage
python exp.py --train_file ../dialog_rc_data/json/Trn.json
--dev_file ../dialog_rc_data/json/Dev.json
--embedding_file glove.6B.100d.txt
--model cnn_lstm_UA_DA --logging_to_file log.txt
--save_model model.h5 --stopwords stopwords.txt
Options
hidden_size
: default is 32.batch_size
: default is 32.utterance_filters
: default is 50.query_filters
: default is 50.nb_epoch
: default is 100.dropout
: default is 0.2.learning_rate
: default is 0.001.
Cite
@inproceedings{ma-etal-2018-challenging,
title = "Challenging Reading Comprehension on Daily Conversation: Passage Completion on Multiparty Dialog",
author = "Ma, Kaixin and
Jurczyk, Tomasz and
Choi, Jinho D.",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/N18-1185",
doi = "10.18653/v1/N18-1185",
pages = "2039--2048",
}