Awesome
Imitation Learning algorithms and Co-training for Mobile ALOHA
Project Website: https://mobile-aloha.github.io/
This repo contains the implementation of ACT, Diffusion Policy and VINN, together with 2 simulated environments: Transfer Cube and Bimanual Insertion. You can train and evaluate them in sim or real. For real, you would also need to install Mobile ALOHA. This repo is forked from the ACT repo.
Updates:
You can find all scripted/human demo for simulated environments here.
Repo Structure
imitate_episodes.py
Train and Evaluate ACTpolicy.py
An adaptor for ACT policydetr
Model definitions of ACT, modified from DETRsim_env.py
Mujoco + DM_Control environments with joint space controlee_sim_env.py
Mujoco + DM_Control environments with EE space controlscripted_policy.py
Scripted policies for sim environmentsconstants.py
Constants shared across filesutils.py
Utils such as data loading and helper functionsvisualize_episodes.py
Save videos from a .hdf5 dataset
Installation
conda create -n aloha python=3.8.10
conda activate aloha
pip install torchvision
pip install torch
pip install pyquaternion
pip install pyyaml
pip install rospkg
pip install pexpect
pip install mujoco==2.3.7
pip install dm_control==1.0.14
pip install opencv-python
pip install matplotlib
pip install einops
pip install packaging
pip install h5py
pip install ipython
cd act/detr && pip install -e .
- also need to install https://github.com/ARISE-Initiative/robomimic/tree/r2d2 (note the r2d2 branch) for Diffusion Policy by
pip install -e .
Example Usages
To set up a new terminal, run:
conda activate aloha
cd <path to act repo>
Simulated experiments (LEGACY table-top ALOHA environments)
We use sim_transfer_cube_scripted
task in the examples below. Another option is sim_insertion_scripted
.
To generated 50 episodes of scripted data, run:
python3 record_sim_episodes.py --task_name sim_transfer_cube_scripted --dataset_dir <data save dir> --num_episodes 50
To can add the flag --onscreen_render
to see real-time rendering.
To visualize the simulated episodes after it is collected, run
python3 visualize_episodes.py --dataset_dir <data save dir> --episode_idx 0
Note: to visualize data from the mobile-aloha hardware, use the visualize_episodes.py from https://github.com/MarkFzp/mobile-aloha
To train ACT:
# Transfer Cube task
python3 imitate_episodes.py --task_name sim_transfer_cube_scripted --ckpt_dir <ckpt dir> --policy_class ACT --kl_weight 10 --chunk_size 100 --hidden_dim 512 --batch_size 8 --dim_feedforward 3200 --num_epochs 2000 --lr 1e-5 --seed 0
To evaluate the policy, run the same command but add --eval
. This loads the best validation checkpoint.
The success rate should be around 90% for transfer cube, and around 50% for insertion.
To enable temporal ensembling, add flag --temporal_agg
.
Videos will be saved to <ckpt_dir>
for each rollout.
You can also add --onscreen_render
to see real-time rendering during evaluation.
For real-world data where things can be harder to model, train for at least 5000 epochs or 3-4 times the length after the loss has plateaued. Please refer to tuning tips for more info.
ACT tuning tips
TL;DR: if your ACT policy is jerky or pauses in the middle of an episode, just train for longer! Success rate and smoothness can improve way after loss plateaus.