Awesome
Artifact for OSDI'23 paper
Yuke Wang, et al. Accelerating Graph Neural Networks with Fine-grained intra-kernel Communication-Computation Pipelining on Multi-GPU Platforms. OSDI'23.
1. Setup (Skip to Section-2 if evaluated on provided GCP)
1.1. Clone this project from Github.
git clone --recursive git@github.com:YukeWang96/MGG-OSDI23-AE.git
1.2. Download libraries and datasets.
- Download libraries (
cudnn-v8.2, nvshmem_src_2.0.3-0, openmpi-4.1.1
).
wget https://storage.googleapis.com/mgg_data/local.tar.gz
tar -zxvf local.tar.gz && rm local.tar.gz
tar -zxvf local/nvshmem_src_2.0.3-0/build_cu112.tar.gz
- Setup baseline DGL
cd dgl_pydirect_internal
wget https://storage.googleapis.com/mgg_data/graphdata.tar.gz && tar -zxvf graphdata.tar.gz && rm graphdata.tar.gz
cd ..
- Setup baseline ROC
cd roc-new
git submodule update --init --recursive
wget https://storage.googleapis.com/mgg_data/data.tar.gz && tar -zxvf data.tar.gz && rm -rf data.tar.gz
or
gsutil cp -r gs://mgg_data/roc-new/ .
1.3. Launch Docker for MGG.
cd Docker
./launch.sh
1.4. Compile implementation.
mkdir build && cd build && cmake .. && cd ..
./build.sh
2. Run initial test experiment.
- Please try study experiments in below Section-3.4 and Section-3.5
3. Reproduce the major results from paper.
3.1 Compare with UVM on 4xA100 and 8xA100 (Fig.8a and Fig.8b).
./0_run_MGG_UVM_4GPU_GCN.sh
./0_run_MGG_UVM_4GPU_GIN.sh
./0_run_MGG_UVM_8GPU_GCN.sh
./0_run_MGG_UVM_8GPU_GIN.sh
Note that the results can be found at
Fig_8_UVM_MGG_4GPU_GCN.csv
,Fig_8_UVM_MGG_4GPU_GIN.csv
,Fig_8_UVM_MGG_8GPU_GCN.csv
, andFig_8_UVM_MGG_8GPU_GIN.csv
.
3.2 Compare with DGL on 8xA100 for GCN and GIN (Fig.7a and Fig.7b).
./launch_docker.sh
cd gcn/
./0_run_gcn.sh
cd ../gin/
./0_run_gin.sh
Note that the results can be found at
1_dgl_gin.csv
and1_dgl_gcn.csv
and our MGG reference is inMGG_GCN_8GPU.csv
andMGG_8GPU_GIN.csv
.
3.3 Compare with ROC on 8xA100 (Fig.9).
cd roc-new/docker
./launch.sh
Note that the results can be found at
Fig_9_ROC_MGG_8GPU_GCN.csv
andFig_9_ROC_MGG_8GPU_GIN.csv
.
Results of ROC is similar as
Dataset | Time (ms) |
---|---|
425.67 | |
enwiki-2013 | 619.33 |
it-2004 | 5160.18 |
paper100M | 8179.35 |
ogbn-products | 529.74 |
ogbn-proteins | 423.82 |
com-orkut | 571.62 |
3.4 Compare NP with w/o NP (Fig.10a).
python 2_MGG_NP.py
Note that the results can be found at
MGG_NP_study.csv
. Similar to following table.
Dataset | MGG_WO_NP | MGG_W_NP | Speedup (x) |
---|---|---|---|
76.797 | 16.716 | 4.594 | |
enwiki-2013 | 290.169 | 88.249 | 3.288 |
ogbn-product | 86.362 | 26.008 | 3.321 |
3.5 Compare WL with w/o WL (Fig.10b).
python 3_MGG_WL.py
Note that the results can be found at
MGG_WL_study.csv
. Results are similar to
Dataset | MGG_WO_NP | MGG_W_NP | Speedup (x) |
---|---|---|---|
75.035 | 18.92 | 3.966 | |
enwiki-2013 | 292.022 | 104.878 | 2.784 |
ogbn-product | 86.632 | 29.941 | 2.893 |
3.6 Compare API (Fig.10c).
python 4_MGG_API.py
Note that the results can be found at
MGG_API_study.csv
. Results are similar to
Norm.Time w.r.t. Thread | MGG_Thread | MGG_Warp | MGG_Block |
---|---|---|---|
1.0 | 0.299 | 0.295 | |
enwiki-2013 | 1.0 | 0.267 | 0.263 |
ogbn-product | 1.0 | 0.310 | 0.317 |
3.7 Design Space Search (Fig.11a)
python 5_MGG_DSE_4GPU.py
Note that the results can be found at
Reddit_4xA100_dist_ps.csv
andReddit_4xA100_dist_wpb.csv
. Results similar to
Reddit_4xA100_dist_ps.csv
dist\ps | 1 | 2 | 4 | 8 | 16 | 32 |
---|---|---|---|---|---|---|
1 | 17.866 | 17.459 | 16.821 | 16.244 | 16.711 | 17.125 |
2 | 17.247 | 16.722 | 16.437 | 16.682 | 17.053 | 17.808 |
4 | 16.826 | 16.41 | 16.583 | 17.217 | 17.627 | 18.298 |
8 | 16.271 | 16.725 | 17.193 | 17.655 | 18.426 | 18.99 |
16 | 16.593 | 17.214 | 17.617 | 18.266 | 19.009 | 19.909 |
Reddit_4xA100_dist_wpb.csv
dist\wpb | 1 | 2 | 4 | 8 | 16 |
---|---|---|---|---|---|
1 | 34.773 | 23.164 | 16.576 | 15.235 | 16.519 |
2 | 34.599 | 23.557 | 17.254 | 15.981 | 19.56 |
4 | 34.835 | 23.616 | 17.674 | 17.034 | 22.084 |
8 | 34.729 | 23.817 | 18.302 | 18.708 | 25.656 |
16 | 34.803 | 24.161 | 18.879 | 23.44 | 32.978 |
python 5_MGG_DSE_8GPU.py
Note that the results can be found at
Reddit_8xA100_dist_ps.csv
andReddit_8xA100_dist_wpb.csv
.
Reference
-
NVIDIA OpenSHMEM Library (NVSHMEM) Documentation. <br> https://docs.nvidia.com/nvshmem/api/index.html
-
NVIDIA Unified Memory. <br> https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
-
cuDNN Example for MNIST. <br> https://github.com/haanjack/mnist-cudnn
-
Deep Graph Library <br> Wang, Minjie, et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks.. The International Conference on Learning Representations (ICLR'19).
-
ROC <br> Jia, Zhihao, et al. Improving the accuracy, scalability, and performance of graph neural networks with roc. Proceedings of Machine Learning and Systems 2 (MLsys'20).
-
GNNAdvisor <br> Wang, Yuke, et al. GNNAdvisor: An adaptive and efficient runtime system for GNN acceleration on GPUs. 15th USENIX symposium on operating systems design and implementation (OSDI'21).
-
GE-SpMM <br> Huang, Guyue, et al. Ge-spmm: General-purpose sparse matrix-matrix multiplication on gpus for graph neural networks. International Conference for High Performance Computing, Networking, Storage and Analysis (SC'20).