Home

Awesome

DSSD MXNET

Features

Specific VOC mAP Results

backboneSSDSSD_min_lossDSSD*DSSD_stage1DSSD_stage2SSD+TDM
vgg16-51275.5675.3575.8565.1675.7776.80
vgg16-30074.6574.5975.74——————
resnet101-51278.4378.0279.2571.9878.1979.18
resnet101-32175.1874.8075.54——————

Requirements

We tested our code on:

Ubuntu 16.04, Python 2.7 with

numpy(1.11.0), cv2(3.3.0-dev)

mxnet 0.11.0

Preparation for Training

1.Download the converted pretrained vgg16_reduced model here.

2.Prepare VOC datasets and generate .rec files by using tools/prepare_pascal.sh

3.Set TDM or DSSD mode in function get_config from symbol/symbol_factory.py.By default, DSSD mode is used,please set all configs by your needs.

4.start training

python train.py

or choice a bash file which provide in ./script/ to run some default parameters setting,such like try the two stage training strategy.

bash scripts/stage1_dssd_train_res_voc.sh

Demo

  1. Download model, available at here, and place it in the model folder.
  2. run demo.py

References

1.SSD: Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC. SSD: Single shot multibox detector. InEuropean Conference on Computer Vision 2016 Oct 8 (pp. 21-37). Springer International Publishing.Link

2.DSSD: Fu CY, Liu W, Ranga A, Tyagi A, Berg AC. DSSD: Deconvolutional Single Shot Detector. arXiv preprint arXiv:1701.06659. 2017 Jan 23. Link

3.TDM: Shrivastava A, Sukthankar R, Malik J, Gupta A. Beyond Skip Connections: Top-Down Modulation for ObjectDetection. arXiv preprint arXiv:1612.06851. 2016 Dec 20.Link