Home

Awesome

MuVI

A multi-view latent variable model with domain-informed structured sparsity, that integrates noisy domain expertise in terms of feature sets.

Examples | Paper | BibTeX

Build Coverage

Basic usage

The MuVI class is the main entry point for loading the data and performing the inference:

import numpy as np
import pandas as pd
import anndata as ad
import mudata as md
import muvi

# Load processed input data (missing values are allowed)
# Matrix of dimensions n_samples x n_rna_features
rna_df = pd.read_csv(...)
# Matrix of dimensions n_samples x n_prot_features
prot_df = pd.read_csv(...)

# Load prior feature sets, e.g. gene sets
gene_sets = muvi.fs.from_gmt(...)
# Binary matrix of dimensions n_gene_sets x n_rna_features
gene_sets_mask = gene_sets.to_mask(rna_df.columns)

# Create a MuVI object by passing both input data and prior information
model = muvi.MuVI(
    observations={"rna": rna_df, "prot": prot_df},
    prior_masks={"rna": gene_sets_mask},
    ...
    device=device,
)

# Alternatively, create a MuVI model from AnnData (single-view)
rna_adata = ad.AnnData(rna_df, dtype=np.float32)
rna_adata.varm['gene_sets_mask'] = gene_sets_mask.T
model = muvi.tl.from_adata(
    adata, 
    prior_mask_key="gene_sets_mask", 
    ..., 
    device=device
)

# Alternatively, create a MuVI model from MuData (multi-view)
mdata = md.MuData({"rna": rna_adata, "prot": prot_adata})
model = muvi.tl.mdata(
    mdata, 
    prior_mask_key="gene_sets_mask", 
    ..., 
    device=device
)

# Fit the model for a given number of training epochs
model.fit(batch_size, n_epochs, ...)

# Continue with the downstream analysis (see below)

Submodules

The package consists of three additional submodules for analysing the results post-training:

Tutorials

Check out our basic tutorial to get familiar with MuVI, or jump straight to a single-cell multiome analysis!

R users can readily export a trained MuVI model into R with a single line of code and resume the analysis with the MOFA2 package.

muvi.ext.save_as_hdf5(model, "muvi.hdf5", save_metadata=True)

See this vignette for more details!

Installation

We suggest using conda to manage your environments, and pip to install muvi as a python package. Follow these steps to get muvi up and running!

  1. Create a python environment in conda:
conda create -n muvi python=3.10
  1. Activate freshly created environment:
source activate muvi
  1. Install muvi with pip:
python3 -m pip install muvi
  1. Alternatively, install the latest version with pip:
python3 -m pip install git+https://github.com/MLO-lab/MuVI.git

Make sure to install a GPU version of PyTorch to significantly speed up the inference.

Citation

If you use MuVI in your work, please use this BibTeX entry:

Encoding Domain Knowledge in Multi-view Latent Variable Models: A Bayesian Approach with Structured Sparsity

Arber Qoku and Florian Buettner

International Conference on Artificial Intelligence and Statistics (AISTATS) 2023

https://proceedings.mlr.press/v206/qoku23a.html