Home

Awesome

Image-Super-Resolution-Guide

Image super-resolution is a hot topic in the computer vision field.

Recently, deep learning has been proven to be of great benefit to image super-resolution (SR) and video super-resolution (VSR). After SRCNN, CNN-based SR methods are blooming and constantly refreshing the best results.

This project aims to collect papers, data sets, and techniques related to SR. Furthermore, we will provide model explanation and analysis of advantages and disadvantages.

All papers can be found in the【Paper】folder.

Some of the information in this project is referenced to Awesome-Super-Resolution and Awesome Super-Resolution.


The most widely used metric methods

MetricPapers
PSNR
SSIMImage Quality Assessment: From Error Visibility to Structural Similarity, Wang, Zhou; Bovik, Alan C.; Sheikh, Hamid R.; Simoncelli, Eero P, TIP 2004, [TIP].
MS-SSIMMultiscale structural similarity for image quality assessment, Wang, Zhou; Simoncelli, Eero P.; Bovik, Alan C., ACSSC 2003, [ACSSC].
IFCAn information fidelity criterion for image quality assessment using natural scene statistics, Sheikh, Hamid Rahim; Bovik, Alan Conrad; de Veciana, Gustavo de Veciana, TIP 2005, [TIP].
VIFImage information and visual quality, Sheikh, Hamid Rahim; Bovik, Alan C., TIP 2006, [TIP].

The most widely used training datasets

NameUsageLink
BSD300TrainDownload
BSD500TrainDownload
91-ImageTrainDownload
DIV2KTrainWebsite
Real SRTrainWebsite

The most widely used test datasets

NameUsageLink
Set5TestDownload
Set14TestDownload
BSD100TestDownload
Urban100TestDownload
Manga109TestWebsite
SunHay80TestDownload
DIV2KTestWebsite
Real SRTestWebsite

Single-Image Super-Resolution (SISR)

1. Non-deep learning based SR (classic papers)

  1. 【BlindSR】Nonparametric Blind Super-resolution, Michaeli, Tomer; Irani, Michal, [OpenAccess], [Project].

  2. 【A+】A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution, Timofte, Radu; De Smet, Vincent; Van Gool, Luc, [ACCV], [Project]

  3. 【RFL】Fast and accurate image upscaling with super-resolution forests, Schulter, Samuel; Leistner, Christian; Bischof, Horst, [OpenAccess]

  4. 【SelfExSR】Single image super-resolution from transformed self-exemplars, Huang, Jia-Bin; Singh, Abhishek; Ahuja, Narendra, [Matlab*], [OpenAccess].

  5. 【PSyCo】PSyCo: Manifold Span Reduction for Super Resolution, Perez-Pellitero, Eduardo; Salvador, Jordi; Ruiz-Hidalgo, Javier; Rosenhahn, Bodo, [C++/Matlab*], [OpenAccess].

  6. 【RAISR】RAISR: Rapid and Accurate Image Super Resolution, Romano, Yaniv; Isidoro, John; Milanfar, Peyman, [arXiv], [TCI]


2. Deep learning based SR

2.0. SR Survey

  1. Deep Learning for Image Super-resolution:A Survey, Zhihao Wang, Jian Chen, Steven C.H. Hoi, [arXiv]
<p align="center"> <img src="image/1.png" width="600px"/> </p> <p align="center"> <img src="image/2.png" width="600px"/> </p>
  1. A Deep Journey into Super-resolution: A Survey, Saeed Anwar, Salman Khan, and Nick Barnes, [arXiv]
<p align="center"> <img src="image/3.png" width="600px"/> </p> <p align="center"> <img src="image/4.png" width="600px"/> </p>

2.1. Supervised SR

2.2. Unsupervised SR

Video Super-Resolution (VSR)