Awesome
Variaional AutoEncoder-Tensorflow
I Write the code of Variational AutoEncoder using the tensorflow
This code has following features
- when we train our model, I use 0.6 dropout rate.
- All activation functions are elu.
- I use Xavier_initializer for weights initialization.
Enviroment
- OS: window 10(64bit)
- Python 3.5
- Tensorflow-gpu version: 1.3.0rc2
Schematic of VAE
Code
1. Gaussian Encoder
def gaussian_encoder(X, n_hidden, n_z, keep_prob):
w_init = tf.contrib.layers.xavier_initializer()
input_shape = X.get_shape()
with tf.variable_scope("encoder_hidden_1", reuse = tf.AUTO_REUSE):
w1 = tf.get_variable("w1", shape = [input_shape[1], n_hidden], initializer = w_init)
b1 = tf.get_variable("b1", shape = [n_hidden], initializer = tf.constant_initializer(0.))
h1 = tf.matmul(X,w1) + b1
h1 = tf.nn.elu(h1)
h1 = tf.nn.dropout(h1, keep_prob)
with tf.variable_scope("encoder_hidden_2", reuse = tf.AUTO_REUSE):
w2 = tf.get_variable("w2", shape = [n_hidden,n_hidden], initializer = w_init)
b2 = tf.get_variable("b2", shape = [n_hidden], initializer = tf.constant_initializer(0.))
h2 = tf.matmul(h1,w2) + b2
h2 = tf.nn.elu(h2)
h2 = tf.nn.dropout(h2,keep_prob)
with tf.variable_scope("encoder_z", reuse = tf.AUTO_REUSE):
w3 = tf.get_variable("w3", shape = [n_hidden, n_z*2], initializer = w_init)
b3 = tf.get_variable("b3", shape = [n_z*2], initializer = tf.constant_initializer(0.))
h3 = tf.matmul(h2,w3) + b3
mean = h3[:, : n_z]
std = tf.nn.softplus(h3[:, n_z :]) + 1e-6
return mean, std
2. Bernoulli Decoder
def Bernoulli_decoder(z, n_hidden, n_out ,keep_prob):
w_init = tf.contrib.layers.xavier_initializer()
z_shape = z.get_shape()
with tf.variable_scope("decoder_hidden_1", reuse = tf.AUTO_REUSE):
w4 = tf.get_variable("w4", shape = [z_shape[1],n_hidden], initializer = w_init)
b4 = tf.get_variable("b4", shape = [n_hidden], initializer = tf.constant_initializer(0.))
h4 = tf.matmul(z,w4) + b4
h4 = tf.nn.elu(h4)
h4 = tf.nn.dropout(h4,keep_prob)
with tf.variable_scope("decoder_hidden_2", reuse = tf.AUTO_REUSE):
w5 = tf.get_variable("w5", shape = [n_hidden, n_hidden], initializer = w_init)
b5 = tf.get_variable("b5", shape = [n_hidden], initializer = tf.constant_initializer(0.))
h5 = tf.matmul(h4,w5) + b5
h5 = tf.nn.elu(h5)
h5 = tf.nn.dropout(h5, keep_prob)
with tf.variable_scope("decoder_output", reuse = tf.AUTO_REUSE):
w6 = tf.get_variable("w6",shape = [n_hidden, n_out], initializer = w_init)
b6 = tf.get_variable("b6", shape = [n_out], initializer = tf.constant_initializer(0.))
h6 = tf.matmul(h5,w6) + b6
h6 = tf.nn.sigmoid(h6)
return h6
3. Variational AutoEncoder
def Variational_autoencoder(X,n_hidden_encoder,n_z, n_hidden_decoder, keep_prob ):
X_shape = X.get_shape()
n_output = X_shape[1]
mean, std = gaussian_encoder(X,n_hidden_encoder, n_z,keep_prob)
z = mean + std*tf.random_normal(tf.shape(mean,out_type = tf.int32), 0, 1, dtype = tf.float32)
X_out = Bernoulli_decoder(z,n_hidden_decoder,n_output,keep_prob)
X_out = tf.clip_by_value(X_out,1e-8, 1 - 1e-8)
likelihood = tf.reduce_mean(tf.reduce_sum(X*tf.log(X_out) + (1-X)*tf.log(1- X_out),1))
KL_Divergence = tf.reduce_mean(0.5*tf.reduce_sum(1 - tf.log(tf.square(std) + 1e-8) + tf.square(mean) + tf.square(std), 1))
Recon_error = -1*likelihood
Regularization_error = KL_Divergence
ELBO = Recon_error + Regularization_error
return z ,X_out, Recon_error, Regularization_error, ELBO
Result
1. Comparing the generated images with the original images(n_z = 10)
2. Result, When n_z =2
<table align='center'> <tr align='center'> <td> Distribution of MNIST </td> <td> Manifold of MNIST </td> </tr> <tr> <td><img src = 'image/result2.JPG' height = '400px'> <td><img src = 'image/result3.JPG' height = '400px'> </tr> </table>Reference Papers
1. https://arxiv.org/abs/1312.6114
2. https://arxiv.org/abs/1606.05908
References
1.https://github.com/hwalsuklee/tensorflow-mnist-VAE
2.https://github.com/shaohua0116/VAE-Tensorflow
4.https://www.facebook.com/groups/TensorFlowKR/permalink/496009234073473/?hc_location=ufi
-- Above Reference is ppt which is distributed by Hwal-Suk Lee from facebook page tensorflow korea
5.http://jaejunyoo.blogspot.com/2017/04/auto-encoding-variational-bayes-vae-1.html