Awesome
DIPP-Differentiable Integrated Prediction and Planning
This repo is the implementation of the following paper:
Differentiable Integrated Motion Prediction and Planning with Learnable Cost Function for Autonomous Driving <br> Zhiyu Huang, Haochen Liu, Jingda Wu, Chen Lv <br> AutoMan Research Lab, Nanyang Technological University <br> [Paper] [arXiv] [Project Website]
Dataset
Download the Waymo Open Motion Dataset v1.1; only the files in uncompressed/scenario/training_20s
are needed. Place the downloaded files into training and testing folders separately.
Installation
Install dependency
sudo apt-get install libsuitesparse-dev
Create conda env
conda env create -f environment.yml
conda activate DIPP
Install Theseus
Install the Theseus library, follow the guidelines.
Usage
Data Processing
Run data_process.py
to process the raw data for training. This will convert the original data format into a set of .npz
files, each containing the data of a scene with the AV and surrounding agents. You need to specify the file path to the original data --load_path
and the path to save the processed data --save_path
. You can optionally set --use_multiprocessing
to speed up the processing.
python data_process.py \
--load_path /path/to/original/data \
--save_path /output/path/to/processed/data \
--use_multiprocessing
Training
Run train.py
to learn the predictor and planner (if set --use_planning
). You need to specify the file paths to training data --train_set
and validation data --valid_set
. Leave other arguments vacant to use the default setting.
python train.py \
--name DIPP \
--train_set /path/to/train/data \
--valid_set /path/to/valid/data \
--use_planning \
--pretrain_epochs 5 \
--train_epochs 20 \
--batch_size 32 \
--learning_rate 2e-4 \
--device cuda
Open-loop testing
Run open_loop_test.py
to test the trained planner in an open-loop manner. You need to specify the path to the original test dataset --test_set
(path to the folder) and also the file path to the trained model --model_path
. Set --render
to visualize the results and set --save
to save the rendered images.
python open_loop_test.py \
--name open_loop \
--test_set /path/to/original/test/data \
--model_path /path/to/saved/model \
--use_planning \
--render \
--save \
--device cpu
Closed-loop testing
Run closed_loop_test.py
to do closed-loop testing. You need to specify the file path to the original test data --test_file
(a single file) and also the file path to the trained model --model_path
. Set --render
to visualize the results and set --save
to save the videos.
python closed_loop_test.py \
--name closed_loop \
--test_file /path/to/original/test/data \
--model_path /path/to/saved/model \
--use_planning \
--render \
--save \
--device cpu
Citation
If you find our repo or our paper useful, please use the following citation:
@article{huang2023differentiable,
title={Differentiable integrated motion prediction and planning with learnable cost function for autonomous driving},
author={Huang, Zhiyu and Liu, Haochen and Wu, Jingda and Lv, Chen},
journal={IEEE Transactions on Neural Networks and Learning Systems},
year={2023},
publisher={IEEE}
}