Awesome
RTD-Net (ICCV 2021)
This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021.
News
[2022.4.4] We release codes, checkpoint and features on ActivityNet-1.3.
[2021.8.17] We release codes, checkpoint and features on THUMOS14.
Overview
This paper presents a simple and end-to-end learnable framework (RTD-Net) for direct action proposal generation, by re-purposing a Transformer-alike architecture. Thanks to the parallel decoding of multiple proposals with explicit context modeling, our RTD-Net outperforms the previous state-of-the-art methods in temporal action proposal generation task on THUMOS14 and also yields a superior performance for action detection on this dataset. In addition, free of NMS post-processing, our detection pipeline is more efficient than previous methods.
Dependencies
- Python 3.7 or higher
- PyTorch 1.6 or higher
- Torchvision
- Numpy 1.19.2
Data Preparation
To reproduce the results in THUMOS14 without further changes:
-
Download the data from GoogleDrive.
-
Place I3D_features and TEM_scores into the folder
data
.
Checkpoint
Dataset | AR@50 | AR@100 | AR@200 | AR@500 | checkpoint |
---|---|---|---|---|---|
THUMOS14 | 41.52 | 49.33 | 56.41 | 62.91 | link |
Training
Use train.sh
to train RTD-Net.
# First stage
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_port=11323 --use_env main.py --window_size 100 --batch_size 32 --stage 1 --num_queries 32 --point_prob_normalize
# Second stage for relaxation mechanism
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_port=11324 --use_env main.py --window_size 100 --batch_size 32 --lr 1e-5 --stage 2 --epochs 10 --lr_drop 5 --num_queries 32 --point_prob_normalize --load outputs/checkpoint_best_sum_ar.pth
# Third stage for completeness head
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_port=11325 --use_env main.py --window_size 100 --batch_size 32 --lr 1e-4 --stage 3 --epochs 20 --num_queries 32 --point_prob_normalize --load outputs/checkpoint_best_sum_ar.pth
Testing
Inference with test.sh
.
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_port=11325 --use_env main.py --window_size 100 --batch_size 32 --lr 1e-4 --stage 3 --epochs 20 --num_queries 32 --point_prob_normalize --eval --resume outputs/checkpoint_best_sum_ar.pth
References
We especially thank the contributors of the BSN, G-TAD and DETR for providing helpful code.
Citations
If you think our work is helpful, please feel free to cite our paper.
@InProceedings{Tan_2021_RTD,
author = {Tan, Jing and Tang, Jiaqi and Wang, Limin and Wu, Gangshan},
title = {Relaxed Transformer Decoders for Direct Action Proposal Generation},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {13526-13535}
}
Contact
For any question, please file an issue or contact
Jing Tan: jtan@smail.nju.edu.cn
Jiaqi Tang: jqtang@smail.nju.edu.cn