Home

Awesome

LinK: Linear Kernel for LiDAR-based 3D Perception

Official PyTorch implementation of LinK, from the following paper:

LinK: Linear Kernel for LiDAR-based 3D Perception. CVPR 2023.
Tao Lu, Xiang Ding, Haisong Liu, Gangshan Wu, Limin Wang <br /> Multimedia Computing Group, Nanjing University
[arxiv][Conference version]


<p align="center"> <img src="figs/link.png" width=100% height=100% class="center"> </p>

LinK is a large kernel backbone for 3D perception tasks, consisting of a linear kernel generator and a pre-aggregation strategy. The two designs scale up the perception range into 21x21x21 with linear complexity.


Model Zoo

Segmentation on SemanticKITTI(val)

namekernel configmIoUmodel
LinKcos_x:(2x3)^367.72model
LinKcos:(3x7)^367.50model
LinK(encoder-only)cos_x:(2x3)^367.33model
LinK(encoder-only)cos:(3x5)^367.07model

Detection on nuScenes

namekernel configNDSmAPmodel
LinKcos:(3x7)^369.563.6model
namekernel configNDSmAPmodel
LinKcos:(3x7)^371.066.3model
LinK(TTA)cos:(3x7)^373.469.8model

Installation

Clone this repo to your workspace.

git clone https://github.com/MCG-NJU/LinK.git
cd LinK

Semantic Segmentation

please check segmentation/INSTALL.md and segmentation/GET_STARTED.md.

Detection

see detection/INSTALL.md and detection/GET_STARTED.md.

Citation

If you find our work helpful, please consider citing:

@InProceedings{lu2023link,
    author    = {Lu, Tao and Ding, Xiang and Liu, Haisong and Wu, Gangshan and Wang, Limin},
    title     = {LinK: Linear Kernel for LiDAR-Based 3D Perception},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2023},
    pages     = {1105-1115}
}
@article{lu2022app,
  title={APP-Net: Auxiliary-point-based Push and Pull Operations for Efficient Point Cloud Classification},
  author={Lu, Tao and Liu, Chunxu and Chen, Youxin and Wu, Gangshan and Wang, Limin},
  journal={arXiv preprint arXiv:2205.00847},
  year={2022}
}

Contact

Acknowledgement

Our code is based on CenterPoint, SPVNAS, spconv, torchsparse. And we thank a lot for the kind help from Ruixiang Zhang, Xu Yan and Yukang Chen.